
Introduction to Vue 3
Training

with examples and
hands-on exercises

WEBUCATOR

Copyright © 2023 by Webucator. All rights reserved.

No part of this manual may be reproduced or used in any manner without written permission of the
copyright owner.

Version: 1.1.0

The Authors

Chris Minnick

Chris Minnick, the co-founder of WatzThis?, has overseen the development of hundreds of web and
mobile projects for customers from small businesses to some of the world’s largest companies. A prolific
writer, Chris has authored and co-authored books and articles on a wide range of Internet-related topics
including HTML, CSS, mobile apps, e-commerce, e-business, Web design, XML, and application
servers. His published books include Adventures in Coding, JavaScript For Kids For Dummies, Writing
Computer Code, Coding with JavaScript For Dummies, Beginning HTML5 and CSS3 For Dummies,
Webkit For Dummies, CIW E-Commerce Designer Certification Bible, and XHTML.

Nat Dunn (Editor)

Nat Dunn is the founder of Webucator (www.webucator.com), a company that has provided training
for tens of thousands of students from thousands of organizations. Nat started the company in 2003
to combine his passion for technical training with his business expertise, and to help companies benefit
from both. His previous experience was in sales, business and technical training, and management. Nat
has an MBA from Harvard Business School and a BA in International Relations from Pomona College.

Follow Nat on Twitter at @natdunn and Webucator at @webucator.

Class Files

Download the class files used in this manual at
https://static.webucator.com/media/public/materials/classfiles/VUE103-1.1.0.zip.

Errata

Corrections to errors in the manual can be found at https://www.webucator.com/books/errata/.

https://static.webucator.com/media/public/materials/classfiles/VUE103-1.1.0.zip
https://www.webucator.com/books/errata/

Table of Contents

LESSON 1. Getting Started with Vue 3..1
Unpacking Vue 3...1

Exercise 1: Vue 3 Hello, World!..2
Introducing Our Project: Mathificent...4

Exercise 2: Get Started with vue-cli...7
Exercise 3: Learning the Structure of a Vue App...11

LESSON 2. Basic Vue Features...19
The Vue Instance..19
Writing Vue Templates...21

Exercise 4: Writing Templates..25
Using Components Inside Components...30

Exercise 5: Breaking an App into Components...32
Passing Data to Child Components...41
Dynamic Data in Templates..44
Computed Properties...44
The data Object..46
The methods Object...46
Instance Lifecycle Hooks...50

LESSON 3. Directives..51
Directives..52
Conditionals with v-if / v-else-if / v-else...53
Two-way Binding with v-model..54
One-way Data Binding, Repeating, and Event Handling...58
Repeating an Element using v-for..59
Event Handling...62
Putting it All Together...63
Emitting Custom Events..65

LESSON 4. Implementing Game Logic..73

Exercise 6: Passing Data Between Components...74
Exercise 7: Vue Data Binding...80
Exercise 8: Implementing Conditional Rendering...88
Exercise 9: Improving the Form Layout..94
Exercise 10: Making the Game UI..97
Exercise 11: Capturing Form Events...109
Exercise 12: Setting the Equation...115

Table of Contents | i

LESSON 5. Transitions and Animations..127
Using the transition Component..127

Exercise 13: Adding the Timer...131
Exercise 14: Adding Transitions..138
Exercise 15: Catching Keyboard Events..143

LESSON 6. Vue 3 Routing...145
Routing...145
Vue Router..147

Exercise 16: Implementing Routes...150

ii | Table of Contents

LESSON 1
Getting Started with Vue 3

EVALUATION COPY: Not to be used in class.

Topics Covered

 Starting a new Vue project.

 Structuring a Vue project.

Introduction

Vue 3, often just called “Vue,” is a progressive, incrementally adoptable, reactive front-end JavaScript
framework. You’ll learn what that means in this lesson and you’ll also get started on your first Vue
application.

EVALUATION COPY: Not to be used in class.

❋

1.1. Unpacking Vue 3

One thing that makes Vue different from other front-end JavaScript frameworks is its philosophy of
allowing incremental adoption. You don’t need to buy into an entire ecosystem with Vue when you
first get started. It’s easy to just include the Vue library in a page and start using it. As you become
more skilled with it, you’ll want to integrate it into a modern front-end development build, testing,
and module structure, but, as you will see, Vue makes that process painless.

LESSON 1: Getting Started with Vue 3 | 1

EVALUATION COPY: Not to be used in class.

 Exercise 1: Vue 3 Hello, World!
 10 to 15 minutes

In this exercise, you will make your first Vue application by simply including Vue 3 in a page using a
script element.

1. In the ClassFiles/Vue/Exercises folder, create a new file named index.html and write
a basic HTML page containing a div element with an id attribute with a value of “app”:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>First Vue</title>

</head>
<body>
<div id="app"></div>

</body>
</html>

2. Add the following script element in the head element of your new file to include the Vue
library:

<script src="https://unpkg.com/vue@3"></script>

3. Add the following script element right above the closing </body> tag:

<script>
const { createApp } = Vue
createApp({
data() {
return {
message: 'Hello, Vue!'

}
}

}).mount('#app');
</script>

2 | LESSON 1: Getting Started with Vue 3

EVALUATION COPY: Not to be used in class.

4. Type the following h1 element between the opening and closing <div> tags to dynamically
display the message variable using Vue:

<div id="app">
<h1>{{message}}</h1>

</div>

5. Save your HTML file and open it in a web browser. You’ll see that {{message}} is dynamically
replaced with the value that the message property of the data object was set to.

6. Type the following input element below the h1 in your HTML file, but still inside the div
with the id of “app”:

<input v-model="message">

7. Refresh (or reopen) index.html in your browser. Type into the input field and notice that
the contents of the h1 are updated dynamically as you type:

LESSON 1: Getting Started with Vue 3 | 3

EVALUATION COPY: Not to be used in class.

Solution: Vue/Solutions/getting-started/index.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width, initial-scale=1">5.
<title>First Vue</title>6.
<script src="https://unpkg.com/vue@3"></script>7.

</head>8.
<body>9.
<div id="app">10.
<h1>{{message}}</h1>11.
<input v-model="message">12.

</div>13.
<script>14.
const { createApp } = Vue15.
createApp({16.
data() {17.
return {18.
message: 'Hello, Vue!'19.

}20.
}21.

}).mount('#app');22.
</script>23.

</body>24.
</html>25.

EVALUATION COPY: Not to be used in class.

❋

1.2. Introducing Our Project: Mathificent

Throughout these lessons, you’ll be using the latest Vue syntax and techniques to build a single-page
application for practicing arithmetic. The application you’ll be building is based on the game Mathificent,
which you can view at https://www.mathificent.com. It consists of the following three views:

4 | LESSON 1: Getting Started with Vue 3

EVALUATION COPY: Not to be used in class.

https://www.mathificent.com

Config View

Game View

LESSON 1: Getting Started with Vue 3 | 5

EVALUATION COPY: Not to be used in class.

Times-Up View

6 | LESSON 1: Getting Started with Vue 3

EVALUATION COPY: Not to be used in class.

 Exercise 2: Get Started with vue-cli
 10 to 15 minutes

Including Vue in your HTML files and writing JavaScript in script blocks, as you did in the previous
exercise, works for very small applications and demos. However, Vue developers use a tool called vue-cli,
which makes managing larger applications easier and sets up a development environment for compiling
and working with Vue components.

In this exercise, you will use vue-cli to create your first Vue application, which will serve as the starting
point for the math game you will be building with Vue. After you’ve built your Vue application, you’ll
use Node package manager (npm) to package and deploy the application to a development server.

Most of the process of building a simple application and installing the Node packages and scripts that
make it run is done by vue-cli. This makes it easy to quickly start working on a project. So, let’s jump
in!

1. From your class files, open Vue/Exercises in the terminal by right-clicking the folder and
selecting Open in Integrated Terminal:

2. Install vue-cli by running:

npm install -g @vue/cli

This will take a minute to install. If you get a message about vulnerabilities found, you can
ignore it.

LESSON 1: Getting Started with Vue 3 | 7

EVALUATION COPY: Not to be used in class.

3. After vue-cli is installed, create the mathificent application by running the following command:

vue create mathificent

The script will ask you to make a choice regarding your development dependencies:

Vue CLI v5.0.6
? Please pick a preset: (Use arrow keys)
Default ([Vue 3] babel, eslint)
Default ([Vue 2] babel, eslint)
Manually select features

We’ll be using the default choice, so you can just press Enter when the question appears. If
you are asked whether you want to use Yarn or npm to install dependencies, use the arrow
keys on your keyboard to highlight Use npm, and then press Enter. The dependencies will
be downloaded and after a few minutes you’ll have a new Vue project.

4. Make your new Vue project the working directory:

cd mathificent

At this point, your first Vue program has been created and you can look at the individual files
it contains:

8 | LESSON 1: Getting Started with Vue 3

EVALUATION COPY: Not to be used in class.

5. Run:

npm run serve

This is an npm script that was created when you ran vue create. Its job is to launch your
Vue app using a development server. A development server is a web server that runs on a single
software developer’s computer and makes it possible for the developer to test out code as it is
written and modified, without having to make it available for use by the entire internet.

6. When you see output similar to the following, it means your development server is running:

App running at:
- Local: http://localhost:8080/
- Network: http://192.168.1.222:8080/

Open a browser and go to http://localhost:8080 to see your new Vue website:

7. Back in the terminal, press CTRL+C to stop the app. When prompted, confirm that you
want to do so.

8. Close the terminal window by pressing the trash can icon:

LESSON 1: Getting Started with Vue 3 | 9

EVALUATION COPY: Not to be used in class.

10 | LESSON 1: Getting Started with Vue 3

EVALUATION COPY: Not to be used in class.

 Exercise 3: Learning the Structure of a Vue
App

 20 to 30 minutes

In this exercise, you will start with a boilerplate Vue project and make some modifications to it to learn
about the different files involved in Vue applications and the different parts of those files.

1. From the mathificent directory, open src/App.vue for editing.

2. By default, Visual Studio Code doesn’t know how to properly highlight .vue files. To fix
this problem, install the Volar extension in Visual Studio Code. It is possible that Visual
Studio Code will prompt you to install this extension when you first open a file with a .vue
extension. If it does, just click Install in the prompt. If you’re not prompted, install Volar
like this:

A. Click the Extensions icon (below the bug) on the left of the Explorer panel.
B. Search for “Volar”.
C. Click the Install button.

3. When Volar is done installing, click the Explorer icon in the left panel of Visual Studio Code
to return to viewing your project files. When you open a .vue file, it should now be properly
color-coded.

LESSON 1: Getting Started with Vue 3 | 11

EVALUATION COPY: Not to be used in class.

4. Notice the structure of the App.vue file: it has a template block at the top, followed by a
script block, followed by a style block. In Vue, this file is called a “single-file component.”

5. Examine the template block. It renders an image and another component, named
HelloWorld:

<template>

<HelloWorld msg="Welcome to Your Vue 3 App"/>

</template>

6. Open src/main.js in your editor. This is the main JavaScript file for the entire Vue
application. This file is the only place in your application that imports the Vue framework
and renders the one component that contains every other component, also known as the root
component. In our application, the root component is App.vue:

Exercise Code 3.1: main.js

import { createApp } from 'vue'1.
import App from './App.vue'2.

3.
createApp(App).mount('#app')4.

7. In main.js, comment out the import statement that imports App:

// import App from './App.vue'

8. Save your file.

9. If your development server isn’t already running, start it by running npm run serve from
the mathificent directory.

10. Once the development server starts up, go to http://localhost:8080 in your browser,
where you’ll see an error message similar to this one:

12 | LESSON 1: Getting Started with Vue 3

EVALUATION COPY: Not to be used in class.

Because App is not imported, the reference to it on line 4 causes the application to fail to
compile.

11. Return to your editor and remove the single-line comment before the import statement and
save the file.

12. Return to your web browser and the application should refresh and be working again. Because
Vue applications are made up of components that are linked together using import statements
and any one file may have many import statements, one of the most common errors that
you’ll see in Vue development is caused by a component or file not being imported or not
being imported correctly.

13. Look at the statement that begins with createApp(App):

createApp(App).mount('#app')

The first part of this statement passes our root component into the createApp function to
create a new application instance. However, an application instance won’t do anything unless
it’s mounted. To mount the root component, the second part of this statement (after the
period) calls the application instance’s mount function. The argument passed to the mount

LESSON 1: Getting Started with Vue 3 | 13

EVALUATION COPY: Not to be used in class.

function is the location in the HTML document where the root component should be
mounted. In this case, it’s the element with an id attribute value of app.

14. Open public/index.html in your editor. This is the HTML file that is loaded when your
web browser loads http://localhost:8080.

15. Change the title from “<%= htmlWebpackPlugin.options.title %>” to “Mathificent!”
and save the file. Notice that the title updates on the browser tab:

16. Find the div element with the “app” id. This is where index.js will render the root
component for your application:

<div id="app"></div>

17. Notice that index.html doesn’t have any code that imports main.js. This is because in
dex.html is a template. When you start the development server (using npm run serve),
the code in main.js (and therefore everything that it imports) is injected into index.html
with <script> tags before the page opens in your web browser.

18. Open src/App.vue in your editor.

19. Delete the img element and notice that the browser updates and the image of the Vue logo
is gone.

20. Open HelloWorld.vue from the src/components directory. This file contains some links
to useful Vue resources. It also contains a larger template block than the App.vue component.
You don’t need to do anything with this component, so close it when you’re done examining
the code, and then delete the HelloWorld.vue file from the components directory. This
will cause the app to fail to compile. We’ll fix that…

14 | LESSON 1: Getting Started with Vue 3

EVALUATION COPY: Not to be used in class.

21. In App.vue, delete the HelloWorld component from the template block, delete the import
statement that imports it, and delete HelloWorld from the components property of the
export statement:

<template>
<HelloWorld msg="Welcome to Your Vue 3 App"/>

</template>

<script>
import HelloWorld from './components/HelloWorld.vue'

export default {
name: 'App',
components: {
HelloWorld

}
}
</script>

22. In the template, add an h1 element with the word “Mathificent” inside it:

<template>
<h1>Mathificent</h1>

</template>

23. Your App.vue file should now look like this:

LESSON 1: Getting Started with Vue 3 | 15

EVALUATION COPY: Not to be used in class.

Exercise Code 3.2: App.vue

<template>1.
<h1>Mathificent</h1>2.

</template>3.
4.

<script>5.
export default {6.
name: 'App',7.
components: {},8.

}9.
</script>10.

11.
<style>12.
#app {13.
font-family: 'Avenir', Helvetica, Arial, sans-serif;14.
-webkit-font-smoothing: antialiased;15.
-moz-osx-font-smoothing: grayscale;16.
text-align: center;17.
color: #2c3e50;18.
margin-top: 60px;19.

}20.
</style>21.

24. And your application should now look like this in the browser.

25. If you see an error message, return to your App.vue file and make sure that it matches the
solution exactly.

26. Remember to stop the app (CTRL+C) and close the terminal when you are done.

16 | LESSON 1: Getting Started with Vue 3

EVALUATION COPY: Not to be used in class.

Conclusion

In this lesson, you have learned how to make a basic Vue application by including the Vue library into
an HTML page and by installing and running vue-cli.

LESSON 1: Getting Started with Vue 3 | 17

EVALUATION COPY: Not to be used in class.

18 | LESSON 1: Getting Started with Vue 3

EVALUATION COPY: Not to be used in class.

LESSON 2
Basic Vue Features

EVALUATION COPY: Not to be used in class.

Topics Covered

 Vue templates.

 Breaking a Vue app into components.

 Passing data between components.

 Dynamic data.

Introduction

In this lesson, you will build a form that allows the user to choose a math operator and a number. In
doing so, you will learn how to work within Vue templates, how to break an application into components
and pass data between those components, how to modify that data on the fly, and how to work with
computed properties and methods.

EVALUATION COPY: Not to be used in class.

❋

2.1. The Vue Instance

A Vue application consists of a root Vue instance created by invoking createApp and passing an options
object into the createApp constructor function. In its most basic form, every Vue application looks
like this:

const app = createApp({
// options

})

LESSON 2: Basic Vue Features | 19

EVALUATION COPY: Not to be used in class.

Most often, the root Vue instance is broken up into components, which are each also Vue instances.
Each of these components has its own options object as well.

The contents of the options object determines how the Vue application will work.

Options vs. Composition API

Vue 3 has two different styles for creating components. The one we’ll be using in this course is
called the Options style. The other style is called Composition. Both styles use the same underlying
Vue system. However, the Options style is currently more widely used and is somewhat easier
to program with. The Composition style is more free-form, and is better suited for large
applications. To learn more about the differences between the Options style and the Composition
style, visit the Vue documentation at https://vuejs.org/guide/introduction.html#api-
styles.

 2.1.1. Instance Properties and Methods

In addition to the custom properties and functions that you write, every Vue object has certain built-in
instance properties and methods that give you access to information and functionality. These all begin
with a “$” sign to differentiate them from user-defined properties. We’ll look at and use some of the
instance properties and methods in the upcoming exercises. For now, the only thing you need to know
is that any time you see a function or variable that starts with a “$” in Vue, that is something that is
baked into Vue.

 2.1.2. Reactivity and Data

Each Vue instance contains a function called data. This data function is what makes Vue reactive.
When the Vue instance is created, the data function runs and returns an object. Everything inside the
data object is loaded into Vue’s reactivity system. When one of the properties in the reactivity system
changes, Vue updates the view (by merging the data into templates) to reflect the new value.

EVALUATION COPY: Not to be used in class.

❋

20 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

https://vuejs.org/guide/introduction.html#api-styles
https://vuejs.org/guide/introduction.html#api-styles

2.2. Writing Vue Templates

Templates determine how a Vue instance will render. Templates are usually written using HTML, but
they can also be written using JavaScript or an XML template language called JSX. Each Vue component
has its own template, and these templates can contain other components as well as HTML and
JavaScript.

You can use dynamic data and code in a template by surrounding it with double curly braces:

Demo 2.1:
Vue/demo-viewer/src/components/basic-vue-features/CurlyBraces.vue

<template>1.
<p>Hello, {{firstName.toUpperCase()}}!</p>2.

</template>3.
4.

<script>5.
export default {6.
name: "CurlyBraces",7.
data: function() {8.
return {9.
firstName: 'Chris'10.

}11.
}12.

}13.
</script>14.

This creates the following page:

Notice that the content in the double curly braces is interpreted: instead of outputting
“{{firstName.toUpperCase()}}”, it outputs the value of firstName in all uppercase letters. Don’t worry
yet about the structure of the code in the script element. It is enough to see that firstName contains
“Chris”.

LESSON 2: Basic Vue Features | 21

EVALUATION COPY: Not to be used in class.

1. To run this file, open Vue/demo-viewer in the terminal by right-clicking the folder and
selecting Open in Integrated Terminal:

2. Install the demo-viewer app using npm install:

npm install

This will take a minute.

3. Once it has installed, run npm run serve and then open http://localhost:8080 in your
browser. Click the Curly Braces link under Basic Vue Features.

 2.2.1. Curly Braces and v-html

Anything in between double curly braces will be output as plain text by default. For example, if a
JavaScript variable contains less than and greater than signs, those signs will show up in their raw format
instead of working as the beginnings and endings of HTML tags.

The v-html attribute (actually, it is a directive but we’ll get into that later) is used to specify that some
dynamic data should be output as HTML.

In the following example, the template will output a dynamically generated title, first using curly braces
and then using v-html:

22 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

http://localhost:8080

Demo 2.2:
Vue/demo-viewer/src/components/basic-vue-features/VHtml.vue

<template>1.
<p>{{title}}</p>2.
<p v-html="title"></p>3.

</template>4.
5.

<script>6.
export default {7.
name: "VHtml",8.
data: function() {9.
return {10.
title: "My Important Post!"11.

}12.
}13.

}14.
</script>15.

Again, don’t worry about the script element yet, except to see that that is where title is defined.

If the demo-viewer app is still running, click the Vue Demos heading to get back to the home page.
If it isn’t already running, run npm run serve from the demo-viewer directory and then open
http://localhost:8080 in your browser. Then click the v-html Directive link under Basic Vue
Features. You should see a page that looks like this:

Notice that the tags are output literally when the double curly braces are used, but they are kept
as HTML tags when the v-html directive is used. The code Vue creates looks like this:

LESSON 2: Basic Vue Features | 23

EVALUATION COPY: Not to be used in class.

http://localhost:8080

<p>My Important Post!</p>
<p>My Important Post!</p>

Remember to stop the app (CTRL+C) and close the terminal when you are done.

24 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

 Exercise 4: Writing Templates
 20 to 30 minutes

In this exercise, you will continue building the Mathificent app. You will use HTML in Vue templates
to create a user interface.

1. To add style to the app, we will use Bootstrap:

A. In Visual Studio Code, open index.html from the Exercises/mathificent/pub
lic directory.

B. Copy the following <link> tag:

<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.0-be ↵↵
ta1/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-
0evHe/X+R7YkIZDRvuzKMRqM+OrBnVFBL6DOitfPri4tjfHxaWutUpFmBp4vmVor"
crossorigin="anonymous">

Paste it in the head in index.html.

C. Copy the following <script> tag:

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.0-be ↵↵
ta1/dist/js/bootstrap.bundle.min.js" integrity="sha384-
pprn3073KE6tl6bjs2QrFaJGz5/SUsLqktiwsUTF55Jfv3qYSDhgCecCxMW52nD2"
crossorigin="anonymous"></script>

Paste it immediately before the close </body> in index.html.

2. Open src/App.vue in your editor.

LESSON 2: Basic Vue Features | 25

EVALUATION COPY: Not to be used in class.

3. Inside the template block, create a <header> element with the header navigation for our
app by placing the following code above the h1 element:

<header>
<nav class="navbar navbar-expand-lg navbar-dark">
<div class="container-fluid">
<button class="navbar-toggler" type="button"
data-bs-toggle="collapse" data-bs-target="#navbarText">

</button>
<div class="collapse navbar-collapse" id="navbarText">

<ul class="navbar-nav mr-auto text-left">
<li class="nav-item active">

Home

</div>
Mathificent

</div>
</nav>

</header>

A Shortcut: Copy and Paste

You can copy and paste from Exercises/starter-code.txt if you would prefer not
to type this out. You will find both this header element and the footer element (shown
below) in that document. If you do so, be sure to review both carefully, so you
understand what’s going on. They both include some Bootstrap classes, and the footer
includes some JavaScript enclosed in double curly braces.

4. Under the h1 element in the App.vue template, type the footer:

<footer class="navbar fixed-bottom">
<div class="container-fluid">

Copyright © {{new Date().getFullYear()}} Webucator

</div>

</footer>

26 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

The JavaScript in the footer will dynamically populate the copyright year. Notice that it is
enclosed in double curly braces. This lets Vue know that it should be interpreted.

5. In the style block at the bottom of App.vue, delete the existing rules and then add a rule
to give the header and footer a steel blue background color:

<style>
footer,
header {
background-color: #3f7cad;

}
</style>

6. Save App.vue.

7. Open the mathificent directory at the terminal and run npm run serve and then open
http://localhost:8080 in your browser. You should now have a header, an h1 element,
and a footer:

LESSON 2: Basic Vue Features | 27

EVALUATION COPY: Not to be used in class.

http://localhost:8080

Solution: Vue/Solutions/basic-vue-features/writing-templates/App.vue

<template>1.
<header>2.
<nav class="navbar navbar-expand-lg navbar-dark">3.
<div class="container-fluid">4.
<button class="navbar-toggler" type="button"5.
data-bs-toggle="collapse" data-bs-target="#navbarText">6.
7.

</button>8.
<div class="collapse navbar-collapse" id="navbarText">9.
<ul class="navbar-nav mr-auto text-left">10.
<li class="nav-item active">11.
Home12.

13.
14.

</div>15.
Mathificent16.

</div>17.
</nav>18.

</header>19.
<h1>Mathificent</h1>20.
<footer class="navbar fixed-bottom">21.
<div class="container-fluid">22.
23.
Copyright © {{new Date().getFullYear()}} Webucator24.

25.
</div>26.

</footer>27.
</template>28.

29.
<script>30.
export default {31.
name: 'App',32.
components: {33.
}34.

}35.
</script>36.

37.
<style>38.
footer,39.
header {40.
background-color: #3f7cad;41.

}42.
</style>43.

28 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

The preceding code shows the complete App.vue file.

Solution:Vue/Solutions/basic-vue-features/writing-templates/index.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="utf-8">4.
<meta http-equiv="X-UA-Compatible" content="IE=edge">5.
<meta name="viewport" content="width=device-width,initial-scale=1.0">6.
<link rel="icon" href="<%= BASE_URL %>favicon.ico">7.
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.0-beta1/dist/css/boot ↵↵

strap.min.css" rel="stylesheet" integrity="sha384-0evHe/X+R7YkIZDRvuzKM ↵↵
RqM+OrBnVFBL6DOitfPri4tjfHxaWutUpFmBp4vmVor" crossorigin="anonymous">

8.

9.
<title>Mathificent!</title>10.

</head>11.
<body>12.
<noscript>13.
We're sorry but <%= htmlWebpackPlugin.options.title %> doesn't

work properly without
14.

JavaScript enabled. Please enable it to continue.15.
</noscript>16.
<div id="app"></div>17.
<!-- built files will be auto injected -->18.
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.0-beta1/dist/js/boot ↵↵

strap.bundle.min.js" integrity="sha384-pprn3073KE6tl6bjs2QrFaJGz5/SUs ↵↵
LqktiwsUTF55Jfv3qYSDhgCecCxMW52nD2" crossorigin="anonymous"></script>

19.

</body>20.
</html>21.

This is the HTML code that should be in public/index.html. It has the Bootstrap CSS and JavaScript
added.

EVALUATION COPY: Not to be used in class.

❋

LESSON 2: Basic Vue Features | 29

EVALUATION COPY: Not to be used in class.

2.3. Using Components Inside Components

Each Vue component exports an object, known as the options object, because it holds the options for
working with the component. This allows other Vue code to import the component. A simple options
object is shown below:

SimpleComp.vue

<script>
export default {
name: 'SimpleComp',
components: {
}

}
</script>

This SimpleComp component can be imported into another component within the same directory
using the following code:

import SimpleComp from './SimpleComp.vue'

And then it can be used in that component’s template like this:

<template>
<SimpleComp />

</template>

This method of abstracting the parts of a user interface into reusable and self-contained components
reduces the complexity of building dynamic user interfaces. For example, the user interface of a shopping
cart in an e-commerce application can be very complex, but broken into its basic components, the
template for rendering a shopping cart might look something like this:

<template>
<ListOfProducts />
<TotalPrice />
<ShippingOptions />

</template>

30 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

The name Option

The name option, while only required for components that call themselves recursively, should
generally be included as it makes debugging easier. For more information, see https://vue
js.org/api/options-misc.html#name.

LESSON 2: Basic Vue Features | 31

EVALUATION COPY: Not to be used in class.

https://vuejs.org/api/options-misc.html#name
https://vuejs.org/api/options-misc.html#name

 Exercise 5: Breaking an App into
Components

 30 to 45 minutes

In this exercise, you will break up the user interface of the Mathificent game into subcomponents.
Although it is possible to write an entire Vue application in a single component, it is generally better
to break the user interface into components that can be reused. So, let’s make some components!

1. Create a new file in the mathificent/src/components directory named Header
NavBar.vue. Note that the name of this file starts with a capital letter. In Vue, the names of
components always start with a capital letter. Notice also that the component name contains
multiple words. Using multi-word component names for all of your components except the
App component makes your component names more descriptive and also prevents conflicts
with HTML elements that have the same name.

2. Inside this new file, add a template block and a script block.

3. Inside the script block, write the export statement:

export default {
name: 'HeaderNavBar'

}

4. Cut the header element from App.vue and paste it inside the template element of Header
NavBar.vue.

5. Inside the template in App.vue, add a self-closing <HeaderNavBar /> tag right before the
h1 element where the <header> tag previously was:

<template>
<HeaderNavBar />
<h1>Mathificent</h1>
<footer class="navbar fixed-bottom">
<div class="container-fluid">

Copyright © {{new Date().getFullYear()}} Webucator

</div>

</footer>
</template>

32 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

6. In the export statement in App.vue, add the HeaderNavBar component to the components
property. This indicates that the HeaderNavBar component is a dependency of the App
component:

export default {
name: 'app',
components: {
HeaderNavBar

}
}

7. Use an import statement inside the script block above the export statement to import
HeaderNavBar into App.

import HeaderNavBar from './components/HeaderNavBar';

8. Notice that when we import the HeaderNavBar component, we need to use ./ before the
path and we don’t type the .vue at the end of the file name.

9. Now, follow this same process to create and use a FooterBar component. When you’re done,
the app should appear just as it did before.

10. Take another look at the finished Mathificent program and think about how you might split
up the main content of the app into components. Here’s one way it could be done:

LESSON 2: Basic Vue Features | 33

EVALUATION COPY: Not to be used in class.

11. The first step in developing a user interface with components in Vue is to create a static version
(meaning without any functionality) of the app. You will do this now. Create a new single-file
component for each of the unique components in the following outline that you haven’t
already created:

App

HeaderNavBar

MainContainer

SelectInput

PlayButton

FooterBar

12. In the template for each component, put a placeholder element containing the name of the
component for now. For example, here’s what the SelectInput component should look
like:

<template>
<div>SelectInput Component</div>

</template>

<script>
export default {
name: 'SelectInput'

}
</script>

13. Now that you have all the components, it is time to put them together in the right order.
Think about the hierarchy of components in your app:

A. App contains HeaderNavBar, MainContainer, and FooterBar.

B. MainContainer contains the “Mathificent” h1 element (moved from App.vue),
two instances of SelectInput, and one PlayButton.

14. Import the correct components into App.vue and MainContainer.vue and then modify
the export statements of these two components to include the correct sub-components.
Remember that, to output a child component in the template block, the parent component
must:

A. Import the component.

34 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

B. Include the component in its components property.

The MainContainer component’s template should contain a main element rather than a
div element. When you’re done, it should look like this in your browser:

15. In the PlayButton component, replace the div element with a button using this code,
which uses a couple of Bootstrap classes for styling:

<button class="btn btn-primary">Play!</button>

16. In the SelectInput component, code the select dropdowns using static options and labels
for now. We’ll make them dynamic shortly:

<label for="select">Select Label</label>
<select id="select">
<option value="sample value">Sample Value</option>

</select>

LESSON 2: Basic Vue Features | 35

EVALUATION COPY: Not to be used in class.

17. In MainContainer.vue, add an id of “main-container” to the main element:

<template>
<main id="main-container">
<h1>Mathificent</h1>
<SelectInput />
<SelectInput />
<PlayButton />

</main>
</template>

18. Add a style block to MainContainer.vue and add a rule to set the element’s width and
give it some margin:

<style>
#main-container {
margin: auto;
width: 380px;

}
</style>

19. If it is not already running, start up your development server by running npm run serve
from the mathificent directory in your terminal. Your application should now look like
this:

Stop the app (CTRL+C) and close the terminal when you are done.

36 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/basic-vue-features/breaking-into-components/App.vue

<template>1.
<div>2.
<HeaderNavBar />3.
<MainContainer />4.
<FooterBar />5.

</div>6.
</template>7.

8.
<script>9.
import HeaderNavBar from './components/HeaderNavBar';10.
import MainContainer from './components/MainContainer';11.
import FooterBar from './components/FooterBar';12.

13.
export default {14.
name: 'app',15.
components: {16.
HeaderNavBar,17.
MainContainer,18.
FooterBar19.

}20.
}21.
</script>22.

23.
<style>24.
footer,25.
header {26.
background-color: #3f7cad;27.

}28.
</style>29.

LESSON 2: Basic Vue Features | 37

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/basic-vue-features/breaking-into-components/HeaderNavBar.vue

<template>1.
<header>2.
<nav class="navbar navbar-expand-lg navbar-dark">3.
<div class="container-fluid">4.
<button class="navbar-toggler" type="button"5.
data-bs-toggle="collapse" data-bs-target="#navbarText">6.
7.

</button>8.
<div class="collapse navbar-collapse" id="navbarText">9.

<ul class="navbar-nav mr-auto text-left">10.
<li class="nav-item active">11.

Home12.
13.

14.
</div>15.
Mathificent16.

</div>17.
</nav>18.

</header>19.
</template>20.

21.
<script>22.
export default {23.
name: 'HeaderNavBar'24.

}25.
</script>26.

38 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/basic-vue-features/breaking-into-components/FooterBar.vue

<template>1.
<footer class="navbar fixed-bottom">2.
<div class="container-fluid">3.
4.
Copyright © {{new Date().getFullYear()}} Webucator5.

6.
</div>7.

</footer>8.
</template>9.

10.
<script>11.
export default {12.
name: 'FooterBar'13.

}14.
</script>15.

LESSON 2: Basic Vue Features | 39

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/basic-vue-features/breaking-into-components/MainContainer.vue

<template>1.
<main id="main-container">2.
<h1>Mathificent</h1>3.
<SelectInput />4.
<SelectInput />5.
<PlayButton />6.

</main>7.
</template>8.

9.
<script>10.
import SelectInput from './SelectInput';11.
import PlayButton from './PlayButton';12.

13.
export default {14.
name: 'MainContainer',15.
components: {16.
SelectInput,17.
PlayButton18.

}19.
}20.

</script>21.
22.

<style scoped>23.
#main-container {24.
margin: auto;25.
width: 380px;26.

}27.
</style>28.

40 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/basic-vue-features/breaking-into-components/SelectInput.vue

<template>1.
<div>2.
<label for="select">Select Label</label>3.
<select id="select">4.
<option value="sample value">Sample Value</option>5.

</select>6.
</div>7.
</template>8.

9.
<script>10.
export default {11.
name: 'SelectInput'12.

}13.
</script>14.

Solution:
Vue/Solutions/basic-vue-features/breaking-into-components/PlayButton.vue

<template>1.
<button class="btn btn-primary">Play!</button>2.

</template>3.
4.

<script>5.
export default {6.
name: 'PlayButton'7.

}8.
</script>9.

EVALUATION COPY: Not to be used in class.

❋

2.4. Passing Data to Child Components

The components that you include inside of another component’s template are known as child
components. The component that includes the child components in its own template is called the
parent component. Parent components can pass data to child components as props (short for

LESSON 2: Basic Vue Features | 41

EVALUATION COPY: Not to be used in class.

“properties”). To pass data as a prop, add an attribute to the tag for the custom component in the
parent’s template and assign the attribute a value.

For example, if you have a custom component that reverses the letters in a string, you might use that
component several times in a parent component, each time passing in a different name as a prop:

<ReverseString stringToReverse="Chris" />
<ReverseString stringToReverse="Nat" />

However, simply passing a prop to a child won’t make it usable in the child. You also need to add the
prop to the props object of the child. The props object contains the props (and their data types) that
can be passed into the component:

{
props: {
stringToReverse: String

},
}

Once you’ve listed a prop in the props object, you can use that prop in the component.

Here is a working ReverseString component:

Demo 2.3:
Vue/demo-viewer/src/components/basic-vue-features/ReverseString.vue

<template>1.
<h2>{{stringToReverse.split('').reverse().join('')}}</h2>2.

</template>3.
4.

<script>5.
export default {6.
name: "ReverseString",7.
props: {8.
stringToReverse: String9.

}10.
}11.
</script>12.

Again, this component can be included in a parent component’s template like this:

42 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

<ReverseString stringToReverse="Chris" />

Run npm run serve from the demo-viewer directory and then open http://localhost:8080 in
your browser. Notice that there are two links to reverse strings. They pass different values to the
ReverseString component. Click them to see the strings reversed.

 2.4.1. Data Types

When you pass a value with the wrong data type in as a prop, Vue does not error. Instead, it outputs
a warning, which you can see in the JavaScript console. The warning will read something like:

[Vue warn]: Invalid prop: type check failed for prop "num". Expected Number with value
5, got String with value "5".

For example, consider the following component:

Demo 2.4:
Vue/demo-viewer/src/components/basic-vue-features/SquareNum.vue

<template>1.
<h2>Square of {{num}}</h2>2.
<p>{{num}}² = {{num * num}}</p>3.

</template>4.
5.

<script>6.
export default {7.
name: "SquareNum",8.
props: {9.
num: Number10.

}11.
}12.
</script>13.
-------Lines 14 through 23 Omitted-------

If you include this component with the following tag, a string will be passed in for the num value:

<SquareNum num="5" />

Vue will generate the warning shown above.

LESSON 2: Basic Vue Features | 43

EVALUATION COPY: Not to be used in class.

http://localhost:8080

However, by default, all prop values passed in as attributes in this way will be strings. We’ll learn how
to pass in different data types soon.

EVALUATION COPY: Not to be used in class.

❋

2.5. Dynamic Data in Templates

At its most basic level, the job of a Vue component is to merge dynamic data with template code to
produce output. Vue provides several ways for generating and working with this dynamic data and for
including it in templates:

1. Computed properties.

2. The data object.

3. The methods object.

We’ll look at each of these now.

EVALUATION COPY: Not to be used in class.

❋

2.6. Computed Properties

As you saw in the previous example, JavaScript code within double curly braces in a template will get
interpreted; however, it’s generally not considered a good practice to muddle up your template with a
lot of calculations and complex JavaScript. Instead, any time you have a piece of dynamic data that
can be calculated based on other data in the template, you should consider making it into a computed
property.

Computed properties are functions that are written as properties of the computed object in the options
object of a Vue instance. For example, you can turn our message reversal code into a computed property
like this:

44 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

{
computed: {
reversedString: function() {
return this.stringToReverse.split('').reverse().join('');

}
}

}

With this computed property function written, you can now use the computed property inside your
template like you would use any other property:

<template>
<div>
Your name in reverse is {{reversedString}}.

</div>
</template>

Here is a working ReverseStringComputed component:

Demo 2.5:
Vue/demo-viewer/src/components/basic-vue-features/ReverseStringComputed.vue

<template>1.
<h2>{{reversedString}}</h2>2.

</template>3.
4.

<script>5.
export default {6.
name: "ReverseStringComputed",7.
props: {8.
stringToReverse: String9.

},10.
computed: {11.
reversedString: function() {12.
return this.stringToReverse.split('').reverse().join('');13.

}14.
}15.

}16.
</script>17.

Besides being useful for neatening up your template, computed properties have another superpower:
they’re cached. If the data that goes into calculating a computed property doesn’t change, then there’s

LESSON 2: Basic Vue Features | 45

EVALUATION COPY: Not to be used in class.

no reason for the computed property to be updated when a template is rendered, so Vue will use the
cached value of the computed property instead. This caching can make your application run faster by
sparing the user’s computer from having to do unnecessary calculations.

EVALUATION COPY: Not to be used in class.

❋

2.7. The data Object

Vue’s data object contains the properties that control when the view updates. Because Vue monitors
them and reacts to changes in them, these properties are called “reactive data.”

The data property of a component holds a function that returns the component’s state. By returning
a function, rather than the data itself, each instance of a component within an application can have its
own unique state. To understand this better, consider the following:

const a = function() {
return ['a', 'b'];

};

const foo = a();
const bar = a();

Will foo === bar be true or false? Even though the two arrays hold the same content, it will be
false, because the function creates and returns a new instance of the array every time it is called. As
such, we can change the bar array without it affecting the foo array. For a component that is only
used once in a Vue application, this wouldn’t make any difference, but for components that are used
more than once, it is essential that each has its own unique state.

2.7. The methods Object

The methods object contains the functions that modify properties in the data object. Unlike computed
properties, the return values of methods are never cached and the function will do its job every time it
is called. For this reason, you should use a computed property if the value returned is likely to be
relatively static.

Consider the following component:

46 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

Demo 2.6:
Vue/demo-viewer/src/components/basic-vue-features/SpellWord.vue

<template>1.
<div>2.
<p>{{wordToSpell}}</p>3.

</div>4.
</template>5.

6.
<script>7.
export default {8.
name: "SpellWord",9.
props: {10.
word: String11.

},12.
data: function() {13.
return {14.
index: 0,15.
wordToSpell: ''16.

}17.
},18.
methods: {19.
spell() {20.
if (this.index < this.word.length) {21.
this.index++;22.
this.wordToSpell = this.word.toLowerCase().substring(0, this.index);23.
setTimeout(this.spell, 500);24.

} else {25.
this.wordToSpell = this.word.toUpperCase();26.

}27.
}28.

},29.
created: function() {30.
this.spell();31.

}32.
}33.
</script>34.

Things to note about the SpellWord component:

1. It gets passed a word prop.

2. It has two data properties: index and wordToSpell, which default to 0 and '', respectively.

LESSON 2: Basic Vue Features | 47

EVALUATION COPY: Not to be used in class.

3. It has a spell() method which sets this.wordToSpell to a longer substring of word every
half second until the complete word is spelled out, at which point, it sets this.wordToSpell
to the full value of word in uppercase letters.

If the demo-viewer app isn’t already running, run npm run serve from the demo-viewer directory
and then open http://localhost:8080 in your browser. Then click the Spell Words link under
Basic Vue Features. You should see a page that spells out several words. The SpellWords component
looks like this:

Demo 2.7:
Vue/demo-viewer/src/components/basic-vue-features/SpellWords.vue

<template>1.
<SpellWord word="Tomato" />2.
<SpellWord word="Abandon" />3.
<SpellWord word="Lollipop" />4.
<SpellWord word="Fascinate" />5.
<SpellWord word="Noticeable" />6.
<SpellWord word="Accommodate" />7.

</template>8.
9.

<script>10.
import SpellWord from './SpellWord.vue';11.

12.
export default {13.
name: "SpellWords",14.
components: {15.
SpellWord16.

}17.
}18.
</script>19.

Here is the page midway through the spellings:

48 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

http://localhost:8080

The most important thing to notice is that each SpellWord component has its own data. As explained
earlier, this is because the SpellWord component’s data object returns a function and not a static
object.

The this Keyword

Take another look at the spell() method from the SpellWord component:

spell() {
if (this.index < this.word.length) {
this.index++;
this.wordToSpell = this.word.toLowerCase().substring(0, this.index);
setTimeout(this.spell, 500);

} else {
this.wordToSpell = this.word.toUpperCase();

}

What is this? The this object is a special object in JavaScript that refers to the current object.
In Vue components, this refers to the component itself. From a component’s methods, you
must use this to access the component’s props, data properties, and methods themselves. If you
fail to use this, the method will look for a local variable (one defined within the method itself)
instead of an instance variable (one defined as a property of the component).

LESSON 2: Basic Vue Features | 49

EVALUATION COPY: Not to be used in class.

2.7. Instance Lifecycle Hooks

At the bottom of the SpellWord component, you may have noticed this code:

created: function() {
this.spell();

}

The created property is an instance lifecycle hook. It runs immediately after an instance is created. We
use it to call this.spell(), which then recursively calls itself every half second.

Conclusion

In this lesson, you have learned to change the data in Vue components and to dynamically update their
templates.

50 | LESSON 2: Basic Vue Features

EVALUATION COPY: Not to be used in class.

LESSON 3
Directives

EVALUATION COPY: Not to be used in class.

Topics Covered

 Vue 3 directives.

 Conditional rendering with v-if, v-else-if, and v-else.

 Binding HTML elements to fields with v-model and v-bind.

 Creating event listeners with v-on.

 Looping with v-for.

 Emitting events from child components.

 Listening for events in parent components.

 Passing data in event emitters.

Introduction

Directives are special attributes that take JavaScript expressions as values. They make it possible to do
many of the most common operations in a component directly in the template. In this lesson, in
addition to learning about directives, you will learn to emit custom events and listen for those events
in parent components.

EVALUATION COPY: Not to be used in class.

❋

LESSON 3: Directives | 51

EVALUATION COPY: Not to be used in class.

3.1. Directives

Vue’s built-in directives are prefixed with “v-”. For example, the v-show directive takes a JavaScript
statement that evaluates to true or false and toggles the value of the element’s display property
based on the result of the statement:

<p v-show="loggedIn">You are logged in as {{yourName}}.</p>

In the above example, the paragraph containing the “logged in” message will only display if the variable
named loggedIn evaluates to true.

Here is another example:

Demo 3.1: Vue/demo-viewer/src/components/directives/VShow.vue

<template>1.
<h3>{{seconds}}</h3>2.
<p v-show="seconds % 2 === 0">I love chocolate!</p>3.
<p v-show="seconds % 2 === 1">I love vanilla!</p>4.

</template>5.
6.

<script>7.
export default {8.
name: "VShow",9.
data: function() {10.
return {11.
seconds: new Date().getSeconds()12.

}13.
}14.

}15.
</script>16.

If the demo-viewer app isn’t already running, run npm run serve from the demo-viewer directory
and then open http://localhost:8080 in your browser. Then click the v-show link under Directives.
If the current value of seconds on your computer’s clock is even, you will get a message saying “I love
chocolate!” Otherwise, you’ll get a message saying “I love vanilla!” You can run the component again
by refreshing the page.

The most common uses for directives are:

1. Conditional rendering with v-if, v-else-if, and v-else.

52 | LESSON 3: Directives

EVALUATION COPY: Not to be used in class.

http://localhost:8080

2. Binding HTML elements to fields with v-model and v-bind.

3. Creating event listeners with v-on.

4. Looping with v-for.

We’ll be using all of these directives in our Mathificent app, so let’s learn how they all work.

EVALUATION COPY: Not to be used in class.

❋

3.2. Conditionals with v-if / v-else-if / v-else

The v-if, v-else-if, and v-else directives work just like if, else if, and else in JavaScript:

Demo 3.2: Vue/demo-viewer/src/components/directives/AgeComp.vue

<template>1.
<h2>Age: {{age}}</h2>2.
<div v-if="age >= 18">3.
<p>You can legally drive and vote.</p>4.

</div>5.
<div v-else-if="age >= 16">6.
<p>You can legally drive, but you can't legally vote.</p>7.

</div>8.
<div v-else>9.
<p>You cannot legally drive or vote.</p>10.

</div>11.
</template>12.

13.
<script>14.
export default {15.
name: "AgeComp",16.
props: {17.
age: Number18.

}19.
}20.
</script>21.
-------Lines 22 through 27 Omitted-------

LESSON 3: Directives | 53

EVALUATION COPY: Not to be used in class.

On the home page of the demo-viewer app, click the Ages link under Directives. This runs the
AgesComp component, which outputs three AgeComp components passing in 15, 17, and 22. The
message output is dependent on the value of the passed-in age prop:

As we saw earlier, the v-show directive can also be used for conditional rendering. The difference
between using v-if and v-show is that v-show renders an element into the DOM and then determines
whether or not to show it, using the CSS display property. The v-if directive evaluates its expression
and determines whether or not to render an element into the DOM based on the result of the expression.

EVALUATION COPY: Not to be used in class.

❋

3.3. Two-way Binding with v-model

Two-way data binding in Vue makes working with forms and data simple. Here’s an example:

<h3>{{message}}</h3>
<input v-model="message">

54 | LESSON 3: Directives

EVALUATION COPY: Not to be used in class.

Two-way data binding creates a connection between the input element and a data property named
“message” so that when the user enters data into the form input, it changes the value of the data
property, and when the data property changes, it updates the value of the form input.

The v-model directive can also be used with other types of form fields:

Textareas

Binding textareas works the same way as binding text inputs:

<textarea v-model="comments"></textarea>

Checkboxes

To bind a checkbox, pass a Boolean value into the v-model directive. In the following example,
isChecked will contain true or false depending on whether or not the checkbox is checked:

<h3>{{isChecked}}</h3>
<input type="checkbox" v-model="isChecked">

Also, because it is two-way binding, if you set the value of isChecked to true in the data object, the
checkbox will be checked by default.

Radio Buttons

For radio buttons, the value of the selected radio button will be used to set the value of the bound
fruit property:

<input name="fruit" value="banana" type="radio" v-model="fruit"> Banana
<input name="fruit" value="apple" type="radio" v-model="fruit"> Apple
<input name="fruit" value="pear" type="radio" v-model="fruit"> Pear

Again, because it is two-way binding, you can preselect a radio button by setting the value of fruit
in the data object.

Select Menus

Select menus work just like radio buttons. The v-model attribute goes in the <select> tag:

LESSON 3: Directives | 55

EVALUATION COPY: Not to be used in class.

<select name="veggie" v-model="veggie">
<option disabled value="">Select a veggie</option>
<option value="eggplant">Eggplant</option>
<option value="squash">Squash</option>
<option value="zucchini">Zucchini</option>

</select>

And again, because it is two-way binding, you can preselect an option by setting the value of veggie
in the data object.

v-model Examples

Try out these v-model examples in the demo-viewer app. If it isn’t already running, run npm run
serve from the demo-viewer directory and then open http://localhost:8080 in your browser.
Then click the v-model link under Directives.

Here is the component code:

56 | LESSON 3: Directives

EVALUATION COPY: Not to be used in class.

http://localhost:8080

Demo 3.3: Vue/demo-viewer/src/components/directives/VModel.vue

<template>1.
<h2>Text Input and Textarea</h2>2.
<h3>{{message}}</h3>3.
<input v-model="message" class="form-control">4.

5.
<h3>{{comments}}</h3>6.
<textarea v-model="comments" class="form-control"></textarea>7.

8.
<h2>Checkbox</h2>9.
<h3>{{isChecked}}</h3>10.
<input type="checkbox" v-model="isChecked">11.

12.
<h2>Radio Buttons</h2>13.
<h3>{{fruit}}</h3>14.
<input name="fruit" value="banana" type="radio" v-model="fruit"> Banana15.
<input name="fruit" value="apple" type="radio" v-model="fruit"> Apple16.
<input name="fruit" value="pear" type="radio" v-model="fruit"> Pear17.

18.
<h2>Select Menu</h2>19.
<h3>{{veggie}}</h3>20.
<select name="veggie" v-model="veggie">21.
<option disabled value="">Select a veggie</option>22.
<option value="eggplant">Eggplant</option>23.
<option value="squash">Squash</option>24.
<option value="zucchini">Zucchini</option>25.

</select>26.
</template>27.

28.
<script>29.
export default {30.
name: "VModel",31.
data: function() {32.
return {33.
message: 'Change me.',34.
comments: '',35.
isChecked: true,36.
fruit: 'pear',37.
veggie: 'squash'38.

}39.
}40.

-------Lines 41 through 61 Omitted-------

LESSON 3: Directives | 57

EVALUATION COPY: Not to be used in class.

EVALUATION COPY: Not to be used in class.

❋

3.4. One-way Data Binding, Repeating, and Event Handling

Vue can also do one-way data binding with the v-bind directive. The v-bind directive creates a
one-way link from a dynamic property to any attribute you specify. To bind an attribute, prefix the
attribute with v-bind::

<button v-bind:disabled="isDisabled">Click me!</button>

When the value of isDisabled changes, the button’s disabled property changes along with it.

 3.4.1. v-bind Shorthand

The v-bind directive is one of the most frequently used Vue directives. To make using it even simpler,
Vue contains a shorthand method for writing it. Instead of writing out the full v-bind directive followed
by a colon and the attribute name, you can just use a colon before an attribute name, like this:

<button :disabled="isDisabled">Click me!</button>

Passing Non-String Values as Props

Earlier (see page 43), we showed the warning that you get when you pass a component a prop
of the wrong data type. To pass in a non-string prop, use v-bind like this:

<SquareNum v-bind:numToSquare="5" />

Or the shorthand version:

<SquareNum :numToSquare="5" />

This tells Vue that the value of the numToSquare attribute is JavaScript and not an HTML
string.

58 | LESSON 3: Directives

EVALUATION COPY: Not to be used in class.

3.4. Repeating an Element using v-for

The v-for directive makes it easy to output multiple elements or components of the same type. Assume
you have the following array of objects:

presidents: [
{
id: 1,
name: "Washington"

},
{
id: 2,
name: "Adams"

},
{
id: 3,
name: "Jefferson"

}
]

The following code will create a button for each president:

<button v-for="president in presidents" v-bind:key="president.id">
{{president.name}}

</button>

The value of v-for is simple to understand: it’s just item in items, where items is an array and
item is the variable holding the current element in the array.

Vue uses the key to track each node. The value of each key in the series must be unique. In this case,
we bind it to each array element’s id.

Remember that we can use the shorthand for v-bind:

<button v-for="president in presidents" :key="president.id">
{{president.name}}

</button>

The following code shows the complete example:

LESSON 3: Directives | 59

EVALUATION COPY: Not to be used in class.

Demo 3.4:
Vue/demo-viewer/src/components/directives/PresidentButtons.vue

<template>1.
<button class="btn btn-primary"2.
v-for="president in presidents" :key="president.id">3.
{{president.name}}4.

</button>5.
</template>6.

7.
<script>8.
export default {9.
name: "PresidentButtons",10.
data: function() {11.
return {12.
presidents: [13.
{14.
id: 1,15.
name: "Washington"16.

},17.
{18.
id: 2,19.
name: "Adams"20.

},21.
{22.
id: 3,23.
name: "Jefferson"24.

}25.
]26.

}27.
},28.

}29.
</script>30.
-------Lines 31 through 44 Omitted-------

If the demo-viewer app isn’t already running, run npm run serve from the demo-viewer directory
and then open http://localhost:8080 in your browser. Then click the President Buttons link
under Directives. You should see a button for each president:

60 | LESSON 3: Directives

EVALUATION COPY: Not to be used in class.

http://localhost:8080

Try This

Open Vue/demo-viewer/src/components/directives/PresidentButtons.vue in your editor
and change the template to output a list:

<template>

<li v-for="president in presidents" :key="president.id">
{{president.name}}

</template>

The page should re-render and show a list:

Try adding another president to the array:

{
id: 4,
name: "Madison"

}

LESSON 3: Directives | 61

EVALUATION COPY: Not to be used in class.

Another list item should appear.

3.4. Event Handling

Most HTML elements have certain events that can happen to them. For example, changing the value
of a form field produces a “change” event, clicking an element produces a “click” event (for most
elements), and when an element first loads into the browser DOM, it emits a “load” event.

Programmers use event listeners to listen for these events and, via callback functions, cause something
else to happen in response.

In Vue, setting event listeners that trigger some other action can be done using the v-on directive. The
v-on directive creates an event listener for the element it is a part of and it takes as its value a JavaScript
statement or the name of a method (defined in the methods property) that should run when the event
occurs.

The following code would call the increment() method every time the button is clicked and would
set count to 0 when the mouse moves off of the button.

<button class="btn btn-primary"
v-on:click="increment()"
v-on:mouseout="count=0">{{count}}</button>

 3.4.2. v-on Shorthand

The v-on directive, like the v-bind directive, is one of the most commonly-used directives. For this
reason, it also has a shorthand form. Instead of writing the full v-on directive, you can just use the ‘@’
symbol, followed by the event you want to listen for. For example:

<button class="btn btn-primary"
@click="increment()"
@mouseout="count=0">{{count}}</button>

The following code shows the complete example:

62 | LESSON 3: Directives

EVALUATION COPY: Not to be used in class.

Demo 3.5:
Vue/demo-viewer/src/components/directives/CounterComp.vue

<template>1.
<button class="btn btn-primary"2.
@click="increment"3.
@mouseout="count=0">{{count}}</button>4.

</template>5.
6.

<script>7.
export default {8.
name: "CounterComp",9.
data: function() {10.
return {11.
count: 012.

}13.
},14.
methods: {15.
increment: function() {16.
this.count++;17.

}18.
}19.

}20.
</script>21.
-------Lines 22 through 36 Omitted-------

If the demo-viewer app isn’t already running, run npm run serve from the demo-viewer directory
and then open http://localhost:8080 in your browser. Then click the Counter link under
Directives. Without moving the cursor off the button, click it again to see the counter increment.
Move your mouse off the button to see it get reset to 0.

3.4. Putting it All Together

Take a look at the following code, which combines the v-bind, v-for, and v-on directives, and also
uses the v-html directive to output unescaped HTML code. Note that it uses the shorthand versions
of v-bind and v-on:

LESSON 3: Directives | 63

EVALUATION COPY: Not to be used in class.

http://localhost:8080

Demo 3.6:Vue/demo-viewer/src/components/directives/QuotesComp.vue

<template>1.
<button class="btn btn-primary"2.
v-for="quote in quotes" :key="quote.id"3.
@click="currentQuoteId=quote.id"4.
:disabled="isCurrentQuoteButton(quote)">{{quote.president}}</button>5.

<article v-html="content"></article>6.
</template>7.

8.
<script>9.
export default {10.
name: "QuotesComp",11.
data: function() {12.
return {13.
currentQuoteId: 1,14.
quotes: [15.
{16.
id: 1,17.
president: "Washington",18.
content: `It is infinitely better to have19.

a few good men than many20.
indifferent ones.`21.

},22.
{23.
id: 2,24.
president: "Adams",25.
content: `If conscience disapproves, the26.

loudest applauses of the27.
world are of little value.`28.

},29.
{30.
id: 3,31.
president: "Jefferson",32.
content: `The most valuable of all talents is that33.

of never using two words when34.
one will do.`35.

}36.
]37.

}38.
},39.
computed: {40.
content: function() {41.
const quote = this.quotes.find(quote => {42.
return quote.id === this.currentQuoteId43.

});44.

64 | LESSON 3: Directives

EVALUATION COPY: Not to be used in class.

return `<q>${quote.content}</q>
 - ${quote.president}`;45.
}46.

},47.
methods: {48.
isCurrentQuoteButton(quote) {49.
return (this.currentQuoteId === quote.id);50.

}51.
}52.

}53.
</script>54.
-------Lines 55 through 73 Omitted-------

Open the demo-viewer app in your browser. Then click the Quotes link under Directives. Click the
buttons to see the presidents’ quotes.

Things to notice:

1. The v-for directive is used to loop through the quotes array.

2. The shorthand version of the v-on directive is used to set currentQuoteId to quote.id,
where quote is the current quote in the array loop.

3. The shorthand version of the v-bind directive is used to bind the disabled attribute to the
isCurrentQuoteButton() method, which returns true if the passed-in quote is the current
quote.

4. content is a computed property, which returns an HTML string to put into the article
element.

EVALUATION COPY: Not to be used in class.

❋

3.5. Emitting Custom Events

In addition to the built-in events that HTML elements emit, it’s possible to emit custom events in
reaction to interactions. To emit a custom event, use the $emit instance method. The $emit method
takes the name of your custom event and, optionally, a value. For example, the following button emits
a custom “hide-me” event and passes the string “fade” to the callback function.

LESSON 3: Directives | 65

EVALUATION COPY: Not to be used in class.

<button id="close-button"
@click="$emit('hide-me', 'fade')">X</button>

You listen for custom events the same way that you listen for built-in events. The passed-in value, if
there is one, is available through the $event parameter:

v-on:hide-me="hideChild($event)"

Or, using the shorthand:

@hide-me="hideChild($event)"

Take a look at the following component:

66 | LESSON 3: Directives

EVALUATION COPY: Not to be used in class.

Demo 3.7: Vue/demo-viewer/src/components/directives/AdComp.vue

<template>1.
<div id="ad">2.
<button id="close-button" v-show="num <= start - 3"3.
@click="$emit('hide-me', 'fade')">X</button>4.

<div id="ad-text">5.
<h1>Reasons to Buy Our Widgets</h1>6.
<p>{{reasons[reasonNum]}}</p>7.

</div>8.
</div>9.

</template>10.
<script>11.
export default {12.
name: "AdComp",13.
props: {14.
start: Number15.

},16.
data: function() {17.
return {18.
num: this.start,19.
reasons: [20.
"They're the cheapest!", "They're the coolest!",21.
"They're the hottest!", "They're the awesomest!",22.
"They're the prettiest!", "They're the best!"23.

],24.
reasonNum: 025.

}26.
},27.
methods: {28.
countDown() {29.
this.num--;30.
this.reasonNum++;31.
if (this.num < 0) {32.
this.$emit('hide-me');33.

} else {34.
setTimeout(this.countDown, 1000);35.

}36.
}37.

},38.
created: function() {39.
setTimeout(this.countDown, 1000);40.

}41.
}42.
</script>43.
-------Lines 44 through 84 Omitted-------

LESSON 3: Directives | 67

EVALUATION COPY: Not to be used in class.

Things to notice:

1. This component is meant to be imported into other components. It will create a
semi-transparent ad that fully covers the viewport:

2. The countDown() method decrements the num property by 1 every second.

3. An “X” button will appear after three seconds have passed:

<button id="close-button" v-show="num <= start - 3"
@click="$emit('hide-me', 'fade')">X</button>

4. When the “X” button is clicked, it will emit a custom “hide-me” event and pass “fade” to the
callback function:

<button id="close-button" v-show="num <= start - 3"
@click="$emit('hide-me', 'fade')">X</button>

5. The countDown() function also emits the custom “hide-me” event, but it doesn’t pass in a
value. It could. We’re just demonstrating that it doesn’t have to:

if (this.num < 0) {
this.$emit('hide-me');

} else {
this.timer = setTimeout(this.countDown, 1000);

}

To see this working, open the demo-viewer app in your browser. Then click the Ad Container link
under Directives.

Next look at this component, which imports and displays the AdComp component:

68 | LESSON 3: Directives

EVALUATION COPY: Not to be used in class.

Demo 3.8:Vue/demo-viewer/src/components/directives/AdContainer.vue

<template>1.
<div class="container">2.
<AdComp :start="5" @hide-me="hideMe($event)" v-show="visible"3.
:class="className" />4.

<p class="text-center">This is the page you were waiting for.</p>5.
</div>6.

</template>7.
8.

<script>9.
import AdComp from './AdComp.vue'10.
export default {11.
name: "AdContainer",12.
components: {13.
AdComp14.

},15.
data: function() {16.
return {17.
visible: true,18.
className: ''19.

}20.
},21.
methods: {22.
hideMe(className) {23.
if (className) {24.
this.className = className;25.

} else {26.
this.visible = false;27.

}28.
}29.

}30.
}31.
</script>32.

Here’s the code that includes the AdComp component:

<AdComp :start="5" @hide-me="hideMe($event)" v-show="visible"
:class="className" />

Things to notice:

LESSON 3: Directives | 69

EVALUATION COPY: Not to be used in class.

1. The start attribute uses the v-bind shorthand. That could also be written:
v-bind:start="5". This indicates that the value of the start attribute is not an HTML
string.

2. When the hide-me event fires, the hideMe() method will be called with the $event argument.

3. The v-show directive is tied to the visible property. If visible becomes false, the
component will be hidden.

4. The class attribute is bound to the className property.

The hideMe() method looks like this:

hideMe(className) {
if (className) {
this.className = className;

} else {
this.visible = false;

}
}

If a value is passed in for className, it sets this.className to className. Remember that, when
the user clicks the “X” button, we pass in the “fade” class, which is a Bootstrap class that hides an
element with a fade effect.

If no value is passed in for className, the method sets this.visible to false, which will abruptly
hide the element.

To see this working, open the demo-viewer app in your browser. Then click the AdContainer link
under Directives.

Additional Examples

There are two additional examples that use directives and event listeners in the demo-viewer app
that you might find useful to review:

1. Vue/demo-viewer/src/components/directives/ListsComp.vue, which has a
child ListComp component.

2. Vue/demo-viewer/src/components/directives/quiz/QuizComp.vue, which
imports a JSON object.

70 | LESSON 3: Directives

EVALUATION COPY: Not to be used in class.

Run the components in the demo-viewer app by clicking the Lists and Quiz links under
Directives. Then review the code and make sure you understand how they work. Feel free to
play around with the code.

Remember to stop the app (CTRL+C) and close the terminal when you are done.

Conclusion

In this lesson, you have learned to work with Vue 3’s directives. In the next lesson, you will use these
directives to build out the Mathificent game.

LESSON 3: Directives | 71

EVALUATION COPY: Not to be used in class.

72 | LESSON 3: Directives

EVALUATION COPY: Not to be used in class.

LESSON 4
Implementing Game Logic

EVALUATION COPY: Not to be used in class.

Topics Covered

 Working with your new Vue skills.

Introduction

In this lesson, you will build out most of the Mathificent game in a series of exercises.

LESSON 4: Implementing Game Logic | 73

EVALUATION COPY: Not to be used in class.

 Exercise 6: Passing Data Between
Components

 20 to 30 minutes

In this exercise, you begin passing data between components.

1. In the export statement for MainContainer.vue (from the Exercises/mathifi
cent/src/components directory), after the components property, add a data function that
returns an operations array for the Operations dropdown:

data: function() {
return {
operations: [
['Addition', '+'],
['Subtraction', '-'],
['Multiplication', 'x'],
['Division', '/']

],
}

}

Notice that each element of the operations array is a 2-element array containing the text
(the operation name) and the value (the operation symbol) that will go in a select option.

2. Add a computed property to make an array of numbers for the Maximum Number dropdown.

computed: {
numbers: function() {
const numbers = [];
for (let number = 2; number <= 100; number++) {
numbers.push([number, number]);

}
return numbers;

}
}

Here, we’re creating an array of numbers that we’ll use to populate the Maximum Number
select input. As with the operations array, each element of the numbers array is a 2-element
array, containing the value and the text of the option in the select dropdown. In this case, the
value and the text are the same: the number.

74 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

3. In the MainContainer component’s template, pass the properties you just created in Main
Container.vue to the SelectInput components.

<SelectInput label="Operation" id="operation" :options="operations" />
<SelectInput label="Maximum Number" id="max-number" :options="numbers" />

4. In the export for SelectInput, specify the props that will be passed into the component:

export default {
name:'SelectInput',
props: {
id: String,
label: String,
options: Array

}
}

5. Use the value of the label prop as the label for the the select:

<label>{{label}}</label>…

6. Bind the values of the id attribute of the select element and the for value of the label
element to the id prop:

<label :for="id">{{label}}</label>
<select :id="id">

7. Use v-for to loop over the elements in the numbers array to make multiple option elements:

<option v-for="option in options" :key="option[1]"
:value="option[1]">{{option[0]}}</option>

8. Start up your development server by running npm run serve from the mathificent directory
in your terminal. Your application should now look like this:

LESSON 4: Implementing Game Logic | 75

EVALUATION COPY: Not to be used in class.

Leave the app running for the remainder of this lesson.

76 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

LESSON 4: Implementing Game Logic | 77

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/implementing-game/passing-data/MainContainer.vue

<template>1.
<main id="main-container">2.
<h1>Mathificent</h1>3.
<SelectInput label="Operation" id="operation" :options="operations" />4.
<SelectInput label="Maximum Number" id="max-number" :options="numbers" />5.
<PlayButton />6.

</main>7.
</template>8.

9.
<script>10.
import SelectInput from './SelectInput';11.
import PlayButton from './PlayButton';12.

13.
export default {14.
name: 'MainContainer',15.
components: {16.
SelectInput,17.
PlayButton18.

},19.
data: function() {20.
return {21.
operations: [22.
['Addition', '+'],23.
['Subtraction', '-'],24.
['Multiplication', 'x'],25.
['Division', '/']26.

],27.
}28.

},29.
computed: {30.
numbers: function() {31.
const numbers = [];32.
for (let number = 2; number <= 100; number++) {33.

numbers.push([number, number]);34.
}35.
return numbers;36.

}37.
}38.

}39.
</script>40.
-------Lines 41 through 47 Omitted-------

78 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/implementing-game/passing-data/SelectInput.vue

<template>1.
<div>2.
<label :for="id">{{label}}</label>3.
<select :id="id">4.
<option v-for="option in options" :key="option[1]"5.
:value="option[1]">6.
{{option[0]}}7.

</option>8.
</select>9.

</div>10.
</template>11.

12.
<script>13.
export default {14.
name: 'SelectInput',15.
props: {16.
id: String,17.
label: String,18.
options: Array19.

}20.
}21.

</script>22.

LESSON 4: Implementing Game Logic | 79

EVALUATION COPY: Not to be used in class.

 Exercise 7: Vue Data Binding
 25 to 40 minutes

In this exercise, you will bind data to input elements.

1. Add a v-model directive to the select element in the SelectInput component:

<select :id="id" v-model="currentValue">

2. To the component’s export statement, add a data property that holds a function that returns
currentValue with a default of an empty string:

export default {
name: 'SelectInput',
props: {
id: String,
label: String,
options: Array

},
data: function() {
return {
currentValue: ''

}
}

}

3. Add a p element below the select and output the value of currentValue:

<p>{{currentValue}}</p>

We are just putting this there temporarily to demonstrate how the current value changes.

4. At this point, each SelectInput element has its own internal state. If it is not already running,
start up the Mathificent app and make selections from the two dropdowns. You should see
something like this:

80 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

5. We need to be able to access the state of the SelectInput component from other components,
so next we’ll add an event emitter and cause the component to be controlled by its parent.

6. In MainContainer.vue, add operation and maxNumber to the data object and give them
default values:

data: function() {
return {
operations: [
['Addition', '+'],
['Subtraction', '-'],
['Multiplication', 'x'],
['Division', '/']

],
operation: 'x',
maxNumber: '10'

}
},

LESSON 4: Implementing Game Logic | 81

EVALUATION COPY: Not to be used in class.

7. Bind each instance of the SelectInput to a data property using v-model and pass that
same property to currentValue as a prop:

<SelectInput :currentValue="operation" label="Operation"
id="operation" v-model="operation" :options="operations" />

<SelectInput :currentValue="maxNumber" label="Maximum Number"
id="max-number" v-model="maxNumber" :options="numbers" />

8. Inside the MainContainer template, below the PlayButton, output the values of the
operation and maxNumber properties for testing:

<p>current operation: {{operation}}</p>
<p>max number: {{maxNumber}}</p>

9. Back in SelectInput, remove the data object with the currentValue property and add
currentValue as a prop inside the SelectInput component.

export default {
name: 'SelectInput',
props: {
id: String,
label: String,
options: Array,
currentValue: String,

}
}

Now, replace v-model="currentValue" in the select tag with :value="currentValue",
so that the dropdown gets its initial value from the parent:

<select :id="id" :value="currentValue">

10. Open your web browser and test out the app so far. Some things to notice:

A. The SelectInput components have their own state and they receive initial values
from the MainContainer component. You can see this by refreshing the page and
noting that the Operation and Maximum Number dropdowns have pre-selected
options.

B. However, changes in the SelectInput components aren’t being reflected in
MainContainer. You can see this by making a change to one of the dropdowns and
noticing that the value under the Play button doesn’t get updated. To enable

82 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

SelectInput to notify MainContainer of changes, we need to emit an event from
SelectInput when an option is selected. And, then we need to listen for that event
in MainContainer.

11. In the template for SelectInput, emit an event when a new option is selected and pass the
value of the new selected option to MainContainer:

<select :id="id" :value="currentValue"
@input="$emit('input', $event.target.value)">

$event is the event that was fired. $event.target is the element on which the event was
fired: the select. And $event.target.value is the current value of that element: the value
of the option that was selected.

12. Style the select by applying a Bootstrap form-select class to it:

<select class="form-select" :id="id" :value="currentValue"
@input="$emit('input', $event.target.value)">

13. Add a emits property to the component’s export and give it a value of an array with a single
element containing the string input:

export default {
name: 'SelectInput',
emits: ['input'],

LESSON 4: Implementing Game Logic | 83

EVALUATION COPY: Not to be used in class.

14. In the MainContainer component, add a v-on directive to each of the SelectInput elements
to listen for the input event. The value of each directive will be a function that updates the
relevant property in the MainContainer

<SelectInput
:currentValue="operation"
label="Operation"
id="operation"
v-model="operation"
:options="operations"
@input="(o) => (this.operation = o)"

/>
<SelectInput
:currentValue="maxNumber"
label="Maximum Number"
id="max-number"
v-model="maxNumber"
:options="numbers"
@input="(n) => (this.maxNumber = n)"

/>

15. Your application should now look like this (after changing the operation to addition and the
maximum number to 18):

84 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

Change the values of the select menus and notice that both the values directly below them
(from the SelectInput component) and the values below the Play button (from the
MainContainer component) get updated to reflect the change.

LESSON 4: Implementing Game Logic | 85

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/implementing-game/data-binding/MainContainer.vue

<template>1.
<main id="main-container">2.
<h1>Mathificent</h1>3.
<SelectInput :currentValue="operation" label="Operation"4.

 id="operation" v-model="operation" :options="operations" @in ↵↵
put="(o)=>(this.operation = o)" />

5.

<SelectInput :currentValue="maxNumber" label="Maximum Number"6.
 id="max-number" v-model="maxNumber" :options="numbers" @in ↵↵

put="(m)=>(this.maxNumber = m)" />
7.

<PlayButton />8.
<p>current operation: {{operation}}</p>9.
<p>max number: {{maxNumber}}</p>10.

</main>11.
</template>12.

13.
<script>14.
import SelectInput from './SelectInput';15.
import PlayButton from './PlayButton';16.

17.
export default {18.
name: 'MainContainer',19.
components: {20.
SelectInput,21.
PlayButton22.

},23.
data: function() {24.
return {25.
operations: [26.
['Addition', '+'],27.
['Subtraction', '-'],28.
['Multiplication', 'x'],29.
['Division', '/']30.

],31.
operation: 'x',32.
maxNumber: '10'33.

}34.
},35.
computed: {36.
numbers: function() {37.
const numbers = [];38.
for (let number = 2; number <= 100; number++) {39.

numbers.push([number, number]);40.
}41.

86 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

return numbers;42.
}43.

}44.
}45.

</script>46.
47.

<style scoped>48.
#main-container {49.
margin: auto;50.
width: 380px;51.

}52.
</style>53.

Solution:Vue/Solutions/implementing-game/data-binding/SelectInput.vue

<template>1.
<div>2.
<label :for="id">{{label}}</label>3.
<select class="form-select" :id="id" :value="currentValue"4.

@input="$emit('input', $event.target.value)">5.
<option v-for="option in options" :key="option[1]"6.
:value="option[1]">{{option[0]}}</option>7.

</select>8.
<p>{{currentValue}}</p>9.

</div>10.
</template>11.

12.
<script>13.
export default {14.
name: 'SelectInput',15.
emits: ['input'],16.
props: {17.
id: String,18.
label: String,19.
options: Array,20.
currentValue: String21.

}22.
}23.

</script>24.

LESSON 4: Implementing Game Logic | 87

EVALUATION COPY: Not to be used in class.

 Exercise 8: Implementing Conditional
Rendering

 25 to 40 minutes

In this exercise, you will use conditional rendering to switch between the game configuration and the
game play screens.

1. First, let’s do a little cleanup:

A. In the MainContainer component, remove the two testing <p> tags below the
<PlayButton> tag.

B. In the SelectInput component, remove the <p> tag below the <select> tag.

2. In the MainContainer component, add a new screen variable to the data object and set
its initial value to “config”. Your data function should now look like this:

data: function() {
return {
operations: [
['Addition', '+'],
['Subtraction', '-'],
['Multiplication', 'x'],
['Division', '/']

],
operation: 'x',
maxNumber: '10',
screen: 'config'

}
}

88 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

3. Inside of the main element, add a div element with the id of “config-container” and a v-if
directive to test whether the current value of screen is “config”:

<main id="main-container">
<div v-if="screen === 'config'" id="config-container">

 <h1>Mathificent</h1>
 <SelectInput :currentValue="operation" label="Operation"
 id="operation" v-model="operation" :options="operations" @in ↵↵
put="(o)=>(this.maxNumber = o)"/>
 <SelectInput :currentValue="maxNumber" label="Maximum Number"
 id="max-number" v-model="maxNumber" :options="numbers" @in ↵↵
put="(m)=>(this.maxNumber = m)"/>
 <PlayButton />
 </div>
</main>

At this point, the value of the screen property will always be “config” so the code inside the
div with the v-if directive will always be displayed. But we’re going to change that.

4. Below the div you just added, add another div with the id of “game-container” and a
v-else-if directive. This div should display when the value of screen is “play”. Also, give
this div the Bootstrap class of “text-center”. Inside the div, add the placeholder text “Game
Here”:

<div v-else-if="screen === 'play'" id="game-container" class="text-center">
Game Here

</div>

5. If it isn’t running already, start the development server and open http://localhost:8080
in your web browser. The configuration screen should be displaying.

6. While the development server is still running, open MainContainer.vue in your editor and
change the value of the screen property to “play”. The browser should now display the
placeholder text for the game.

7. If everything works correctly, change the initial value of the screen property back to “config”
so that we can code a more dynamic way of changing it.

LESSON 4: Implementing Game Logic | 89

EVALUATION COPY: Not to be used in class.

8. Add a new property to the export statement, called methods. Methods are the functions
that your application uses to change its data properties:

export default {
name: 'MainContainer',
components: {
…

},
data: function() {
…

},
methods: {

},
computed: {
…

}
}

9. Add two new functions inside the methods object: config and play. Inside these methods,
change the value of this.screen to the correct values to change what is displayed.

methods: {
config() {
this.screen = "config";

},
play() {
this.screen = "play";

}
},

10. Add a v-on directive to the button element in PlayButton that emits a custom event:

<button class="btn btn-primary" @click="$emit('play-button-click')">
Play!

</button>

11. Back in MainContainer, call play when a play-button-click event occurs:

<PlayButton @play-button-click="play" />

90 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

12. Still in MainContainer.vue, replace the “Game Here” text with a new “Change Game”
button directly inside the conditional div for the “play” screen, and add a v-on directive to
it to call the config() method when clicked:

<div v-else-if="screen === 'play'" id="game-container" class="text-center">
<button class="btn btn-success" @click="config">Change Game</button>

</div>

13. In your browser, click the “Play” button and the “Change Game” button to switch between
the Play screen and the Config screen.

LESSON 4: Implementing Game Logic | 91

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/implementing-game/conditional-rendering/MainContainer.vue

<template>1.
<main id="main-container">2.
<div v-if="screen === 'config'" id="config-container">3.
<h1>Mathificent</h1>4.
<SelectInput :currentValue="operation" label="Operation"5.

 id="operation" v-model="operation" :options="operations" @in ↵↵
put="(o)=>(this.operation = o)"/>

6.

<SelectInput :currentValue="maxNumber" label="Maximum Number"7.
 id="max-number" v-model="maxNumber" :options="numbers" @in ↵↵

put="(m)=>(this.maxNumber = m)"/>
8.

<PlayButton @play-button-click="play" />9.
</div>10.
<div v-else-if="screen === 'play'" id="game-container" class="text-center">11.

<button class="btn btn-success" @click="config">Change Game</button>12.
</div>13.

</main>14.
</template>15.

16.
<script>17.
import SelectInput from './SelectInput';18.
import PlayButton from './PlayButton';19.

20.
export default {21.
name: 'MainContainer',22.

-------Lines 23 through 26 Omitted-------
data: function() {27.
return {28.
operations: [29.
['Addition', '+'],30.
['Subtraction', '-'],31.
['Multiplication', 'x'],32.
['Division', '/']33.

],34.
operation: 'x',35.
maxNumber: '10',36.
screen: 'config'37.

}38.
},39.
methods: {40.
config() {41.
this.screen = "config";42.

},43.
play() {44.

92 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

this.screen = "play";45.
}46.

},47.
-------Lines 48 through 65 Omitted-------

Solution:
Vue/Solutions/implementing-game/conditional-rendering/PlayButton.vue

<template>1.
<button class="btn btn-primary" @click="$emit('play-button-click')">2.
Play!3.

</button>4.
</template>5.

6.
<script>7.
export default {8.
name: 'PlayButton'9.

}10.
</script>11.

LESSON 4: Implementing Game Logic | 93

EVALUATION COPY: Not to be used in class.

 Exercise 9: Improving the Form Layout
 10 to 15 minutes

In this exercise, we’ll quickly improve the form layout by breaking the components into Bootstrap rows
and columns. Keep Mathificent running on the Config screen, so you can watch it update as you make
these changes.

1. In the template of the SelectInput component:

A. Add the row, mx-1, and my-3 classes to the outer div. The row class makes the
browser treat the div as a row. The mx-1 and my-3 classes give the row horizontal
and vertical margins, respectively.

B. Add the col and fw-bold classes to the label element.

C. Add the col class to the select element.

2. In the template of the PlayButton component:

A. Wrap the button in a div element and give the div the row, mx-1, and my-3 classes.

B. Add the form-control class to the button element.

3. The page should now look like this:

94 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

LESSON 4: Implementing Game Logic | 95

EVALUATION COPY: Not to be used in class.

Solution:Vue/Solutions/implementing-game/form-layout/SelectInput.vue

<template>1.
<div class="row mx-1 my-3">2.
<label :for="id" class="col fw-bold">{{label}}</label>3.
<select class="col form-select" :id="id" :value="currentValue"4.

@input="$emit('input', $event.target.value)">5.
<option v-for="option in options" :key="option[1]"6.
:value="option[1]">7.
{{option[0]}}8.

</option>9.
</select>10.

</div>11.
</template>12.

13.
<script>14.
export default {15.
name: 'SelectInput',16.
emits: ['input'],17.
props: {18.
id: String,19.
label: String,20.
options: Array,21.
currentValue: String22.

}23.
}24.

</script>25.

Solution:Vue/Solutions/implementing-game/form-layout/PlayButton.vue

<template>1.
<div class="row mx-1 my-3">2.
<button class="form-control btn btn-primary"3.
@click="$emit('play-button-click')">4.
Play!5.

</button>6.
</div>7.

</template>8.
9.

<script>10.
export default {11.
name: 'PlayButton'12.

}13.
</script>14.

96 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

 Exercise 10: Making the Game UI
 60 to 90 minutes

In this exercise, you will start building the user interface for the game. To see how the final game works,
stop the development server if you have it running. Then run npm install followed by npm run
serve from the mathificent-final directory and play around. Be sure to stop the server before
moving on to the exercise.

1. Here is what the game will look like when it is complete:

LESSON 4: Implementing Game Logic | 97

EVALUATION COPY: Not to be used in class.

Using this screenshot, try to identify the individual elements that make up the user interface
of the game.

2. Think about how many different components you need to make to build this user interface.
It has:

A. A score.

98 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

B. A timer.
C. An equation.
D. Ten number buttons.
E. A clear button.

You could lay that out in rows and columns like this:

LESSON 4: Implementing Game Logic | 99

EVALUATION COPY: Not to be used in class.

Note that the buttons are all in a single row, but are constrained by the width of the container.

3. Start up your development server in Exercises/mathificent if it is not running already.
Press the Play button to show the game. As you proceed through the exercise, keep an eye
on the web browser to see how the interface changes.

4. Create placeholder components in the components directory for each of the following
components (sample code is shown for the GameScore component):

A. GameScore

<template>
<div>GameScore Component</div>

</template>

<script>
export default {
name: 'GameScore'

}
</script>

B. GameTimer

C. GameEquation

For the number and clear buttons, we’ll just use standard HTML button elements.

100 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

5. In the MainContainer component, remove the Change Game button, import the components
you just created, and display them in Bootstrap rows in the template using the tags and classes
shown in the following code:

…
<div v-else-if="screen === 'play'" id="game-container" class="text-center">
<div class="row border-bottom" id="scoreboard">
<div class="col px-3 text-left">
<GameScore />

</div>
<div class="col px-3 text-right">
<GameTimer />

</div>
</div>
<div class="row text-secondary my-2" id="equation">
<GameEquation />

</div>
<div class="row" id="buttons">
<div class="col">
<button class="btn btn-primary number-button">1</button>
<button class="btn btn-primary number-button">2</button>
…
<button class="btn btn-primary number-button">9</button>
<button class="btn btn-primary number-button">0</button>
<button class="btn btn-primary" id="clear-button">Clear</button>

</div>
</div>

</div>

LESSON 4: Implementing Game Logic | 101

EVALUATION COPY: Not to be used in class.

…
import SelectInput from './SelectInput';
import PlayButton from './PlayButton';
import GameScore from './GameScore';
import GameTimer from './GameTimer';
import GameEquation from './GameEquation';

export default {
name: 'MainContainer',
components: {
SelectInput,
PlayButton,
GameScore,
GameTimer,
GameEquation

},
…

6. Write and style the game components’ subcomponents using HTML, CSS, and Bootstrap
classes:

Exercise Code 10.1: GameScore.vue

<template>1.
Score: 02.

</template>3.
4.

<script>5.
export default {6.
name: 'GameScore'7.

}8.
</script>9.

Exercise Code 10.2: GameTimer.vue

<template>1.
Time Left: 602.

</template>3.
4.

<script>5.
export default {6.
name: 'GameTimer'7.

}8.
</script>9.

102 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

Exercise Code 10.3: GameEquation.vue

<template>1.
<div id="equation" class="row">2.
<div class="col-5">1+1</div>3.
<div class="col-2">=</div>4.
<div class="col-5">2</div>5.

</div>6.
</template>7.

8.
<script>9.
export default {10.
name: 'GameEquation'11.

}12.
</script>13.

14.
<style scoped>15.
#equation {16.
font-size: 1.6em;17.
margin: auto;18.
width: 90%;19.

}20.
</style>21.

Notice that the style tag includes a scoped attribute. This is so that the style rules only
affect the component in which they are defined.

7. Next, instead of hardcoding ten number buttons, we’ll dynamically generate the tags using
the v-for directive. Make a new property in the data object in MainContainer.vue called
buttons and set its value to the numbers 1-9 and then a 0:

buttons: [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]

8. Add a v-for directive to the button element to iterate over the buttons array:

<button class="btn btn-primary number-button"
v-for="button in buttons" :key="button">{{button}}</button>

LESSON 4: Implementing Game Logic | 103

EVALUATION COPY: Not to be used in class.

9. In the MainContainer component’s style block, add these rules to style the buttons and
scoreboard:

button.number-button {
border-radius: .25em;
font-size: 3em;
height: 2em;
margin: .1em;
text-align: center;
width: 2em;

}

#clear-button {
border-radius: .25em;
font-size: 3em;
height: 2em;
margin: .1em;
text-align: center;
width: 4.2em;

}

#scoreboard {
font-size: 1.5em;

}

10. The page should now look like this:

104 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

LESSON 4: Implementing Game Logic | 105

EVALUATION COPY: Not to be used in class.

Solution:Vue/Solutions/implementing-game/game-ui/MainContainer.vue

<template>1.
<main id="main-container">2.
<div v-if="screen === 'config'" id="config-container">3.
<h1>Mathificent</h1>4.
<SelectInput :currentValue="operation" label="Operation"5.

 id="operation" v-model="operation" :options="operations" @in ↵↵
put="(o)=>(this.operation = o)" />

6.

<SelectInput :currentValue="maxNumber" label="Maximum Number"7.
 id="max-number" v-model="maxNumber" :options="numbers" @in ↵↵

put="(m)=>(this.maxNumber = m)"/>
8.

<PlayButton @play-button-click="play" />9.
</div>10.
<div v-else-if="screen === 'play'" id="game-container" class="text-center">11.

<div class="row border-bottom" id="scoreboard">12.
<div class="col px-3 text-left">13.
<GameScore />14.

</div>15.
<div class="col px-3 text-right">16.
<GameTimer />17.

</div>18.
</div>19.
<div class="row text-secondary my-2" id="equation">20.
<GameEquation />21.

</div>22.
<div class="row" id="buttons">23.
<div class="col">24.
<button class="btn btn-primary number-button"25.
v-for="button in buttons" :key="button">{{button}}</button>26.

<button class="btn btn-primary">Clear</button>27.
</div>28.

</div>29.
</div>30.

</main>31.
</template>32.

33.
<script>34.
import SelectInput from './SelectInput';35.
import PlayButton from './PlayButton';36.
import GameScore from './GameScore';37.
import GameTimer from './GameTimer';38.
import GameEquation from './GameEquation';39.

40.
export default {41.
name: 'MainContainer',42.

106 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

components: {43.
SelectInput,44.
PlayButton,45.
GameScore,46.
GameTimer,47.
GameEquation48.

},49.
data: function() {50.
return {51.
operations: [52.
['Addition', '+'],53.
['Subtraction', '-'],54.
['Multiplication', 'x'],55.
['Division', '/']56.

],57.
operation: 'x',58.
maxNumber: '10',59.
buttons: [1, 2, 3, 4, 5, 6, 7, 8, 9, 0],60.
screen: 'config'61.

}62.
},63.
methods: {64.
config() {65.
this.screen = "config";66.

},67.
play() {68.
this.screen = "play";69.

}70.
},71.
computed: {72.
numbers: function() {73.
const numbers = [];74.
for (let number = 2; number <= 100; number++) {75.

numbers.push([number, number]);76.
}77.
return numbers;78.

}79.
}80.

}81.
</script>82.

83.
<style scoped>84.
#main-container {85.
margin: auto;86.
width: 380px;87.

LESSON 4: Implementing Game Logic | 107

EVALUATION COPY: Not to be used in class.

}88.
89.

button.number-button {90.
border-radius: .25em;91.
font-size: 3em;92.
height: 2em;93.
margin: .1em;94.
text-align: center;95.
width: 2em;96.

}97.
98.

#clear-button {99.
border-radius: .25em;100.
font-size: 3em;101.
height: 2em;102.
margin: .1em;103.
text-align: center;104.
width: 4.2em;105.

}106.
107.

#scoreboard {108.
font-size: 1.5em;109.

}110.
</style>111.

108 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

 Exercise 11: Capturing Form Events
 20 to 30 minutes

In this exercise, you will control the user input by capturing button clicks.

1. Add an input property to the data object in MainContainer and give it a default value of
an empty string (''). This will hold the user input generated through button clicks.

2. Add a setInput() method to the MainContainer component’s methods that appends a
passed-in string (value) to the input property:

setInput(value) {
this.input += String(value);
this.input = String(Number(this.input));

}

this.input holds a string, so we first convert the value passed to setInput() to a string
and append it to this.input. For example, if this.input is '5' and 2 is passed to
setInput(), we convert 2 to '2' by passing it to String() and then we append '2' to '5'
to give us '52'. This works great most of the time. The one exception is when this.input
already holds '0'. Then if you pass 2, you will wind up with '02'. For that reason, we do
this:

String(Number(this.input))

Number('02') will convert '02' to 2, and String(2) will convert 2 to '2', which looks
better than '02' in our game.

3. Make each number button element call setInput() and pass its value when clicked:

<button class="btn btn-primary number-button"
v-for="button in buttons" :key="button"
@click="setInput(button)">{{button}}</button>

4. Pass the value of input into the GameEquation component as a prop named answer, and
modify the GameEquation component to display it in the place where the answer should be
displayed. No code is shown for this one. See if you can do it on your own.

LESSON 4: Implementing Game Logic | 109

EVALUATION COPY: Not to be used in class.

5. Add a method named clear to the MainContainer component:

clear() {
this.input = '';

}

6. Make the clear button call clear() when clicked:

<button class="btn btn-primary" id="clear-button"
@click="clear">Clear</button>

7. In the app in the browser, click the Play button, and test whether clicking the number buttons
adds the number to the displayed answer and whether clicking the Clear button resets the
answer value.

110 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

LESSON 4: Implementing Game Logic | 111

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/implementing-game/capturing-events/MainContainer.vue

<template>1.
<main id="main-container">2.
<div v-if="screen === 'config'" id="config-container">3.
<h1>Mathificent</h1>4.
<SelectInput :currentValue="operation" label="Operation"5.

 id="operation" v-model="operation" :options="operations" @in ↵↵
put="(o)=>(this.operation = o)"/>

6.

<SelectInput :currentValue="maxNumber" label="Maximum Number"7.
 id="max-number" v-model="maxNumber" :options="numbers" @in ↵↵

put="(m)=>(this.maxNumber = m)"/>
8.

<PlayButton @play-button-click="play" />9.
</div>10.
<div v-else-if="screen === 'play'" id="game-container" class="text-center">11.

<div class="row border-bottom" id="scoreboard">12.
<div class="col px-3 text-left">13.
<GameScore />14.

</div>15.
<div class="col px-3 text-right">16.
<GameTimer />17.

</div>18.
</div>19.
<div class="row text-secondary my-2" id="equation">20.
<GameEquation :answer="input" />21.

</div>22.
<div class="row" id="buttons">23.
<div class="col">24.
<button class="btn btn-primary number-button"25.
v-for="button in buttons" :key="button"26.
@click="setInput(button)">{{button}}</button>27.

<button class="btn btn-primary" id="clear-button"28.
@click="clear">Clear</button>29.

</div>30.
</div>31.

</div>32.
</main>33.

</template>34.
35.

<script>36.
import SelectInput from './SelectInput';37.
import PlayButton from './PlayButton';38.
import GameScore from './GameScore';39.
import GameTimer from './GameTimer';40.
import GameEquation from './GameEquation';41.

112 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

42.
export default {43.
name: 'MainContainer',44.
components: {45.
SelectInput,46.
PlayButton,47.
GameScore,48.
GameTimer,49.
GameEquation50.

},51.
data: function() {52.
return {53.
operations: [54.
['Addition', '+'],55.
['Subtraction', '-'],56.
['Multiplication', 'x'],57.
['Division', '/']58.

],59.
operation: 'x',60.
maxNumber: '10',61.
screen: 'config',62.
buttons: [1, 2, 3, 4, 5, 6, 7, 8, 9, 0],63.
input: ''64.

}65.
},66.
methods: {67.
config() {68.
this.screen = "config";69.

},70.
play() {71.
this.screen = "play";72.

},73.
setInput(value) {74.
this.input += String(value);75.
this.input = String(Number(this.input));76.

},77.
clear() {78.
this.input = '';79.

}80.
},81.

-------Lines 82 through 121 Omitted-------

LESSON 4: Implementing Game Logic | 113

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/implementing-game/capturing-events/GameEquation.vue

<template>1.
<div id="equation" class="row">2.
<div class="col-5">1+1</div>3.
<div class="col-2">=</div>4.
<div class="col-5">{{answer}}</div>5.

</div>6.
</template>7.

8.
<script>9.
export default {10.
name: 'GameEquation',11.
props: {12.
answer: String13.

}14.
}15.

</script>16.
-------Lines 17 through 24 Omitted-------

114 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

 Exercise 12: Setting the Equation
 30 to 45 minutes

In this exercise, you will write the code to create the equations displayed in Mathificent.

1. We will need to generate random integers for the equation. The function for generating
random integers is not specific to Mathificent, so we will put it in a separate helpers.js file
and import it:

A. Create a new folder within the src folder called helpers.

B. Within the helpers folder, create a file called helpers.js.

C. In the Exercises/starter-code.txt file, you will find a JavaScript function
called randInt() that looks like this:

export function randInt(low, high) {
const rndDec = Math.random();
return Math.floor(rndDec * (high - low + 1) + low);

}

Copy and paste that code into helpers.js and save.

2. Open MainContainer.vue in your editor.

3. Import the randInt() function:

import {randInt} from '../helpers/helpers';

LESSON 4: Implementing Game Logic | 115

EVALUATION COPY: Not to be used in class.

4. Add the following getRandNumbers() function to the methods property. This function is
available to copy from Exercises/starter-code.txt, but be sure to review it so you
understand how it works:

getRandNumbers(operator, low, high) {
let num1 = randInt(low, high);
let num2 = randInt(low, high);
const numHigh = Math.max(num1, num2);
const numLow = Math.min(num1, num2);

if(operator === '-') { // Make sure higher num comes first
num1 = numHigh;
num2 = numLow;

}

if(operator === '/') {
if (num2 === 0) { // No division by zero
num2 = randInt(1, high);

}
num1 = (num1 * num2);

}
return {num1, num2};

}

5. Add two new properties, operands and answered, to the data object of MainContainer:

operands will have a value that’s an object containing two properties: the two
operands1 in the math problem.

answered indicates whether the user correctly answered the problem. It should
default to false.

Here’s the code to add:

operands: {num1: '1', num2: '1'},
answered: false

1. The operands are the numbers being operated on by the operator. In 5 + 3, 5 and 3 are the operands.

116 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

6. Create a new method in the MainContainer component called newQuestion, which generates
a new question:

newQuestion() {
this.input='';
this.answered = false;
this.operands = this.getRandNumbers(
this.operation, 0, this.maxNumber

);
}

7. Add a new computed property that will use the operands and operation to generate an
equation:

question: function() {
const num1 = this.operands.num1;
const num2 = this.operands.num2;
const equation = `${num1} ${this.operation} ${num2}`;
return equation;

}

8. Pass question and answered into the GameEquation component as props and display the
value of question in the correct place in GameEquation:

In MainContainer.vue

<GameEquation :question="question"
:answer="input"
:answered="answered" />

In GameEquation.vue

<div class="col-5">{{question}}</div>
…
props: {
question: String,
answer: String,
answered: Boolean

}

LESSON 4: Implementing Game Logic | 117

EVALUATION COPY: Not to be used in class.

9. Back in MainContainer.vue, add a call to newQuestion to the play method. This will
cause a new question to be generated when the game starts:

play() {
this.screen = "play";
this.newQuestion();

},

10. Add a check for the correct answer to the setInput method. If the answer is correct, get a
new question. Your setInput method should now look like this:

setInput(value) {
this.input += String(value);
this.input = String(Number(this.input));
this.answered = this.checkAnswer(this.input,

this.operation,
this.operands);

if (this.answered) {
this.newQuestion();

}
}

11. This will break the app, because we haven’t added the checkAnswer() method yet. Copy
the checkAnswer() method from the starter-code.txt file and add it to the

118 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

MainContainer component’s methods. Review the function to make sure you understand
it:

checkAnswer(userAnswer, operation, operands) {
if (isNaN(userAnswer)) return false; // User hasn’t answered

let correctAnswer;
switch(operation) {
case '+':
correctAnswer = operands.num1 + operands.num2;
break;

case '-':
correctAnswer = operands.num1 - operands.num2;
break;

case 'x':
correctAnswer = operands.num1 * operands.num2;
break;

default: // division
correctAnswer = operands.num1 / operands.num2;

}
return (parseInt(userAnswer) === correctAnswer);

}

12. Make a new data property in MainContainer called score to keep track of the score and
set its initial value to 0.

13. In setInput, increase the value of score when answered is true:

if (this.answered) {
this.newQuestion();
this.score++;

}

14. Pass score into the GameScore component, add it to the GameScore component’s props,
and display the score.

15. Try it out in the browser. You should now be able to answer question after question forever
and ever.

LESSON 4: Implementing Game Logic | 119

EVALUATION COPY: Not to be used in class.

16. The question changes are a little abrupt. It’d be nice to fade the old question out. We will use
the Bootstrap “fade” class for this. In the MainContainer component, add a computed
property called equationClass whose value depends on the value of answered:

equationClass: function() {
if (this.answered) {
return 'row text-primary my-2 fade';

} else {
return 'row text-secondary my-2';

}
}

Now, change the class of the div containing the <GameEquation> tag to be bound to
equationClass:

<div :class="equationClass" id="equation">
<GameEquation :question="question"
:answer="input"
:answered="answered" />

</div>

Finally, we need to add a little delay before getting the next question so that the user has time
to see the fade effect. In the if condition where you call this.newQuestion(), use a
setTimeout to delay that call by 300 milliseconds:

if (this.answered) {
setTimeout(this.newQuestion, 300);
this.score++;

}

Try out the app again. After answering a question correctly, the equation and answer should fade away
before a new question shows up. Things are working pretty well! Time to implement our timer.

Remember to stop the app (CTRL+C) and close the terminal when you are done.

120 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

LESSON 4: Implementing Game Logic | 121

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/implementing-game/setting-the-equation/MainContainer.vue

<template>1.
<main id="main-container">2.

-------Lines 3 through 10 Omitted-------
<div v-else-if="screen === 'play'" id="game-container" class="text-center">11.

<div class="row border-bottom" id="scoreboard">12.
<div class="col px-3 text-left">13.
<GameScore :score="score" />14.

</div>15.
<div class="col px-3 text-right">16.
<GameTimer />17.

</div>18.
</div>19.
<div :class="equationClass" id="equation">20.
<GameEquation :question="question"21.
:answer="input"22.
:answered="answered" />23.

</div>24.
<div class="row" id="buttons">25.
<div class="col">26.
<button class="btn btn-primary number-button"27.
v-for="button in buttons" :key="button"28.
@click="setInput(button)">{{button}}</button>29.

<button class="btn btn-primary" id="clear-button"30.
@click="clear">Clear</button>31.

</div>32.
</div>33.

</div>34.
</main>35.

</template>36.
37.

<script>38.
import SelectInput from './SelectInput';39.
import PlayButton from './PlayButton';40.
import GameScore from './GameScore';41.
import GameTimer from './GameTimer';42.
import GameEquation from './GameEquation';43.
import {randInt} from '../helpers/helpers';44.
export default {45.
name: 'MainContainer',46.
components: {47.
SelectInput,48.
PlayButton,49.

122 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

GameScore,50.
GameTimer,51.
GameEquation52.

},53.
data: function() {54.
return {55.
operations: [56.
['Addition', '+'],57.
['Subtraction', '-'],58.
['Multiplication', 'x'],59.
['Division', '/']60.

],61.
operation: 'x',62.
maxNumber: '10',63.
buttons: [1, 2, 3, 4, 5, 6, 7, 8, 9, 0],64.
screen: 'config',65.
input: '',66.
operands: {num1: '1', num2: '1'},67.
answered: false,68.
score: 069.

}70.
},71.
methods: {72.
config() {73.
this.screen = "config";74.

},75.
play() {76.
this.screen = "play";77.
this.newQuestion();78.

},79.
setInput(value) {80.
this.input += String(value);81.
this.input = String(Number(this.input));82.
this.answered = this.checkAnswer(this.input,83.

this.operation,84.
this.operands);85.

if (this.answered) {86.
setTimeout(this.newQuestion, 300);87.
this.score++;88.

}89.
},90.
clear() {91.
this.input = '';92.

},93.
getRandNumbers(operator, low, high) {94.

LESSON 4: Implementing Game Logic | 123

EVALUATION COPY: Not to be used in class.

let num1 = randInt(low, high);95.
let num2 = randInt(low, high);96.
const numHigh = Math.max(num1, num2);97.
const numLow = Math.min(num1, num2);98.

99.
if(operator === '-') { // Make sure higher num comes first100.
num1 = numHigh;101.
num2 = numLow;102.

}103.
104.

if(operator === '/') {105.
if (num2 === 0) { // No division by zero106.
num2 = randInt(1, high);107.

}108.
num1 = (num1 * num2);109.

}110.
return {num1, num2};111.

},112.
checkAnswer(userAnswer, operation, operands) {113.
if (isNaN(userAnswer)) return false; // User hasn't answered114.

115.
let correctAnswer;116.
switch(operation) {117.
case '+':118.
correctAnswer = operands.num1 + operands.num2;119.
break;120.

case '-':121.
correctAnswer = operands.num1 - operands.num2;122.
break;123.

case 'x':124.
correctAnswer = operands.num1 * operands.num2;125.
break;126.

default: // division127.
correctAnswer = operands.num1 / operands.num2;128.

}129.
return (parseInt(userAnswer) === correctAnswer);130.

},131.
newQuestion() {132.
this.input = '';133.
this.answered = false;134.
this.operands = this.getRandNumbers(135.
this.operation, 0, this.maxNumber136.

);137.
}138.

},139.

124 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

computed: {140.
numbers: function() {141.
const numbers = [];142.
for (let number = 2; number <= 100; number++) {143.
numbers.push([number, number]);144.

}145.
return numbers;146.

},147.
question: function() {148.
const num1 = this.operands.num1;149.
const num2 = this.operands.num2;150.
const equation = `${num1} ${this.operation} ${num2}`;151.
return equation;152.

},153.
equationClass: function() {154.
if (this.answered) {155.
return 'row text-primary my-2 fade';156.

} else {157.
return 'row text-secondary my-2';158.

}159.
}160.

}161.
}162.

</script>163.
-------Lines 164 through 191 Omitted-------

Solution:
Vue/Solutions/implementing-game/setting-the-equation/GameScore.vue

<template>1.
Score: {{score}}2.

</template>3.
4.

<script>5.
export default {6.
name: 'GameScore',7.
props: {8.
score: Number9.

}10.
}11.

</script>12.

LESSON 4: Implementing Game Logic | 125

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/implementing-game/setting-the-equation/GameEquation.vue

<template>1.
<div id="equation" class="row">2.
<div class="col-5">{{question}}</div>3.
<div class="col-2">=</div>4.
<div class="col-5">{{answer}}</div>5.

</div>6.
</template>7.

8.
<script>9.
export default {10.
name: 'GameEquation',11.
props: {12.
question: String,13.
answer: String,14.
answered: Boolean15.

}16.
}17.

</script>18.
-------Lines 19 through 26 Omitted-------

Solution:
Vue/Solutions/implementing-game/setting-the-equation/helpers/helpers.js

export function randInt(low, high) {1.
const rndDec = Math.random();2.
return Math.floor(rndDec * (high - low + 1) + low);3.

}4.

Conclusion

In this lesson, you have used your Vue and JavaScript skills to build out the Mathificent game. We
have a couple of improvements to make, but the game is relatively usable at this point.

126 | LESSON 4: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

LESSON 5
Transitions and Animations

EVALUATION COPY: Not to be used in class.

Topics Covered

 The transition Component.

 Adding a timer.

Introduction

Transitions and animations often make the difference between a user interface that’s functional and a
user interface that feels natural and looks great.

EVALUATION COPY: Not to be used in class.

❋

5.1. Using the transition Component

Vue’s transition component creates enter and leave transitions on elements as they appear in and
are removed from view. In its simplest form, the transition component wraps around an element
and takes a name attribute that will add and remove CSS classes at appropriate timings:

<transition name="fade">
<h1 v-show="visible">Hello, world!</h1>

</transition>

The above code will cause a series of CSS classes to be added and removed:

1. fade-enter-from – this is the starting state for the entering transition. It’s added one frame
before the element is inserted and removed one frame after it’s inserted.

LESSON 5: Transitions and Animations | 127

EVALUATION COPY: Not to be used in class.

2. fade-enter-active – this class is active during the entire entering transition.

3. fade-enter-to – this is the ending state for the transition. It’s added at the same time as
the -enter class is removed.

4. fade-leave-from – this is the the starting state for the exit transition.

5. fade-leave-active – this class is active during the entire exit transition.

6. fade-leave-to – this is the ending state of the exit transition.

 5.1.1. Transitioning with CSS

By itself, the transition component doesn’t add transitions, but by assigning CSS transitions or
animations to these classes, you can create interesting effects. Here is a simple example:

128 | LESSON 5: Transitions and Animations

EVALUATION COPY: Not to be used in class.

Demo 5.1:Vue/demo-viewer/src/components/transitions/FadeComp.vue

<template>1.
<div class="container">2.
<button class="btn btn-primary" @click="visible = !visible">3.
{{toggleCommand}}4.

</button>5.
<transition name="fade">6.
<h1 v-show="visible">Hello, world!</h1>7.

</transition>8.
</div>9.

</template>10.
11.

<script>12.
export default {13.
name: "FadeComp",14.
data: function() {15.
return {16.
visible: false,17.

}18.
},19.
computed: {20.
toggleCommand: function() {21.
return (this.visible ? 'Hide' : 'Show');22.

}23.
}24.

}25.
</script>26.

27.
<style scoped>28.
.fade-enter-from {29.
opacity: 0;30.

}31.
32.

.fade-enter-active {33.
transition: opacity 5s;34.

}35.
36.

.fade-enter-to {37.
opacity: 1;38.

}39.
40.

.fade-leave-from {41.
opacity: 1;42.

}43.
44.

LESSON 5: Transitions and Animations | 129

EVALUATION COPY: Not to be used in class.

.fade-leave-active {45.
transition: opacity 5s;46.

}47.
48.

.fade-leave-to {49.
opacity: 0;50.

}51.
</style>52.

If the demo-viewer app isn’t already running, run npm run serve from the demo-viewer directory
and then open http://localhost:8080 in your browser. Then click the Fade Transition link under
Transitions. Click the Show button to see the “Hello, world!” text fade in. The button label will
change to “Hide”. Click the Hide button to see the text fade out.

Fancy Transitions

Transitions can get really fancy. See https://vuejs.org/guide/built-ins/transi
tion.html for some demos showing the cool things you can do by combining CSS and JavaScript
with Vue’s transition element.

130 | LESSON 5: Transitions and Animations

EVALUATION COPY: Not to be used in class.

http://localhost:8080
https://vuejs.org/guide/built-ins/transition.html
https://vuejs.org/guide/built-ins/transition.html

 Exercise 13: Adding the Timer
 15 to 25 minutes

We’ll now finish the functionality of the game by adding a timer. When the timer runs out, the screen
will switch from the game to a Time’s Up! view. First, we’ll make that switch abruptly, and then we
will add a transition.

1. Add a new property in the data object of MainContainer named gameLength and give it
a default value of 60.

2. Add a new data property named timeLeft and give it a default value of 0.

3. Add a new method named startTimer() that sets an interval that decrements timeLeft
by 1 every second and then clears the timer when timeLeft is 0:

startTimer() {
this.timeLeft = this.gameLength;
if (this.timeLeft > 0) {
this.timer = setInterval(() => {
this.timeLeft--;
if (this.timeLeft === 0) {
clearInterval(this.timer);

}
}, 1000)

}
}

4. Call startTimer from inside the play method.

play() {
this.screen = "play";
this.newQuestion();
this.startTimer();

}

LESSON 5: Transitions and Animations | 131

EVALUATION COPY: Not to be used in class.

5. Add a new method named restart() that sets score to 0, restarts the timer, and gets a new
question:

restart() {
this.score = 0;
this.startTimer();
this.newQuestion();

}

132 | LESSON 5: Transitions and Animations

EVALUATION COPY: Not to be used in class.

6. Use the v-if and v-else directives to show a Time’s Up! view if the value of timeLeft is
0. Note that you will be nesting template tags. The “game-container” div should now
contain this code, some of which you can copy and paste from the starter-code.txt file:

<template v-if="timeLeft === 0">
<h2>Time’s Up!</h2>
<strong class="big">You Answered
<div class="huge">{{score}}</div>
<strong class="big">Questions Correctly
<button class="btn btn-primary form-control m-1"
@click="restart()">

Play Again with Same Settings
</button>
<button class="btn btn-secondary form-control m-1"
@click="config()">

Change Settings
</button>

</template>
<template v-else>
<div class="row border-bottom" id="scoreboard">
<div class="col px-3 text-left">
<GameScore :score="score" />

</div>
<div class="col px-3 text-right">
<GameTimer />

</div>
</div>
<div :class="equationClass" id="equation">
<GameEquation :question="question"
:answer="input"
:answered="answered" />

</div>
<div class="row" id="buttons">
<div class="col">
<button class="btn btn-primary number-button"
v-for="button in buttons" :key="button"
@click="setInput(button)">{{button}}</button>

<button class="btn btn-primary" id="clear-button"
@click="clear()">Clear</button>

</div>
</div>

</template>

7. Pass the value of timeLeft into the GameTimer component as a prop and display it.

LESSON 5: Transitions and Animations | 133

EVALUATION COPY: Not to be used in class.

8. Finally, add the following two classes, which are used in the Times Up! screen, to MainCon
tainer.vue:

.big {
font-size: 1.5em;

}

.huge {
font-size: 5em;

}

9. Try out the game. The timer should count down and when it reaches 0, the game should be
replaced by the Time’s Up! view:

134 | LESSON 5: Transitions and Animations

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/transitions-animations/adding-timer/MainContainer.vue

<template>1.
<main id="main-container">2.

-------Lines 3 through 10 Omitted-------
<div v-else-if="screen === 'play'" id="game-container" class="text-center">11.
<template v-if="timeLeft === 0">12.

<h2>Time's Up!</h2>13.
<strong class="big">You Answered14.
<div class="huge">{{score}}</div>15.
<strong class="big">Questions Correctly16.
<button class="btn btn-primary form-control m-1"17.
v-on:click="restart()">18.
Play Again with Same Settings19.

</button>20.
<button class="btn btn-secondary form-control m-1"21.
v-on:click="config()">22.
Change Settings23.

</button>24.
</template>25.
<template v-else>26.

-------Lines 27 through 48 Omitted-------
</template>49.

</div>50.
</main>51.

</template>52.
53.

<script>54.
-------Lines 55 through 69 Omitted-------

data: function() {70.
return {71.

-------Lines 72 through 84 Omitted-------
score: 0,85.
gameLength: 60,86.
timeLeft: 087.

}88.
},89.
methods: {90.

-------Lines 91 through 157 Omitted-------
startTimer() {158.
this.timeLeft = this.gameLength;159.
if (this.timeLeft > 0) {160.
this.timer = setInterval(() => {161.

LESSON 5: Transitions and Animations | 135

EVALUATION COPY: Not to be used in class.

this.timeLeft--;162.
if (this.timeLeft === 0) {163.
clearInterval(this.timer);164.

}165.
}, 1000)166.

}167.
},168.
restart() {169.
this.score = 0;170.
this.startTimer();171.
this.newQuestion();172.

}173.
},174.

-------Lines 175 through 195 Omitted-------
}196.

}197.
</script>198.

199.
<style scoped>200.
-------Lines 201 through 227 Omitted-------
.big {228.
font-size: 1.5em;229.

}230.
231.

.huge {232.
font-size: 5em;233.

}234.
</style>235.

136 | LESSON 5: Transitions and Animations

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/transitions-animations/adding-timer/GameTimer.vue

<template>1.
Time Left: {{timeLeft}}2.

</template>3.
4.

<script>5.
export default {6.
name: 'GameTimer',7.
props: {8.
timeLeft: Number9.

}10.
}11.

</script>12.

LESSON 5: Transitions and Animations | 137

EVALUATION COPY: Not to be used in class.

 Exercise 14: Adding Transitions
 15 to 25 minutes

Now that the game is complete, we’ll add a cool sliding animation to transition between the game
screen and the "Time’s Up" screen.

1. Put an opening <transition> tag just before the <template> tag that tests whether the
time is up. Give this transition element a name attribute with a value of “slide”.

<transition name="slide">
<template v-if="timeLeft === 0">

2. Wrap the "Time’s Up" screen in a div element. A transition can be applied to any element
that’s rendered conditionally (meaning inside a v-if or a v-show), but it’s only applied to a
single element. In the case of our "Time’s Up" screen, we have several elements. By wrapping
them all in a single div element, however, we create the single element that the transition will
be applied to.

<div>
<h2>Time’s Up!</h2>
…
</button>

</div>

3. Close the transition element after the closing template tag.

4. Change the template opening tag following the "Time’s Up" screen so that it uses a v-if
instead of v-else. This is necessary because v-else only works if it’s the next element after
a closing tag for an element that has a v-if directive.

<template v-if="timeLeft > 0">

5. Add a transition element around the game screen (just before the template tag you just
edited) and give it a name attribute with a value of "slide-right":

<transition name="slide-right">
<template v-if="timeLeft > 0">

138 | LESSON 5: Transitions and Animations

EVALUATION COPY: Not to be used in class.

6. Wrap the code inside this template element with a div element. This is required, because
the transition element expects exactly one child element.

7. Close the transition element after the closing template tag.

8. Start the development server and view the game as it is now. You’ll notice that nothing has
changed. To create the actual transition effects, we need to write some CSS.

9. Add the following CSS rules into the style section of the component. You can also copy
them from the starter-code.txt file. These are the styles for the classes that will be added
and removed during the transition of the "Time’s Up" and game screens. Study these styles,
along with the list of classes that get added and removed during a transition, and see if you
can follow and predict what the transitions will look like.

.slide-leave-active,

.slide-enter-active {
position: absolute;
top: 56px;
transition: 1s;
width: 380px;

}
.slide-enter-from {
transform: translate(-100%, 0);
transition: opacity .5s;

}
.slide-leave-to {
transform: translate(100%, 0);
opacity:0;

}
.slide-right-leave-active,
.slide-right-enter-active {
position: absolute;
top: 56px;
transition: 1s;
width: 380px;

}
.slide-right-enter-from {
transform: translate(100%, 0);
transition: opacity .5s;

}
.slide-right-leave-to {
transform: translate(-100%, 0);
opacity:0;

}

LESSON 5: Transitions and Animations | 139

EVALUATION COPY: Not to be used in class.

10. Start your development server, if isn’t already running, and play the game! When your time
is up, the game screen should slide and fade to the side, while the “Time’s Up” screen slides
and fades from the other side. When you start a new game from the “Time’s Up” screen, the
game screen will slide and fade into place. If you don’t want to wait a full minute to see the
transition, you can change the gameLength property to something short, like 5.

140 | LESSON 5: Transitions and Animations

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/transitions-animations/adding-transitions/MainContainer.vue

<template>1.
-------Lines 2 through 10 Omitted-------

<div v-else-if="screen === 'play'" id="game-container" class="text-center">11.
<transition name="slide">12.
<template v-if="timeLeft === 0">13.
<div>14.
<h2>Time's Up!</h2>15.

-------Lines 16 through 27 Omitted-------
</template>28.

</transition>29.
<transition name="slide-right">30.
<template v-if="timeLeft > 0">31.
<div>32.
<div class="row border-bottom" id="scoreboard">33.

-------Lines 34 through 40 Omitted-------
<div :class="equationClass" id="equation">41.

-------Lines 42 through 45 Omitted-------
<div class="row" id="buttons">46.

-------Lines 47 through 54 Omitted-------
</div>55.

</template>56.
</transition>57.

</div>58.
</main>59.

</template>60.
-------Lines 61 through 207 Omitted-------
<style scoped>208.
-------Lines 209 through 242 Omitted-------

243.
.slide-leave-active,244.
.slide-enter-active {245.
position: absolute;246.
top: 56px;247.
transition: 1s;248.
width: 380px;249.

}250.
251.

.slide-enter-from {252.
transform: translate(-100%, 0);253.
transition: opacity .5s;254.

}255.

LESSON 5: Transitions and Animations | 141

EVALUATION COPY: Not to be used in class.

256.
.slide-leave-to {257.
opacity:0;258.
transform: translate(100%, 0);259.

}260.
261.

.slide-right-leave-active,262.

.slide-right-enter-active {263.
position: absolute;264.
top: 56px;265.
transition: 1s;266.
width: 380px;267.

}268.
269.

.slide-right-enter-from {270.
transform: translate(100%, 0);271.
transition: opacity .5s;272.

}273.
274.

.slide-right-leave-to {275.
opacity:0;276.
transform: translate(-100%, 0);277.

}278.
</style>279.

142 | LESSON 5: Transitions and Animations

EVALUATION COPY: Not to be used in class.

 Exercise 15: Catching Keyboard Events
 10 to 15 minutes

Finally, just to make our game a little more user friendly, let’s catch keyboard events so the user can
enter numbers with the keyboard.

1. In MainContainer.vue, add a new method called handleKeyUp that handles keyup events:

handleKeyUp(e) {
e.preventDefault(); // prevent the normal behavior of the key
if (e.keyCode === 32 || e.keyCode === 13) { // space/Enter
this.clear();

} else if (e.keyCode === 8) { // backspace
this.input = this.input.substring(0, this.input.length - 1);

} else if (!isNaN(e.key)) {
this.setInput(e.key);

}
}

2. Now, add an event listener when the timer starts to capture keyup events, and remove this
event listener when the timer clears:

startTimer() {
window.addEventListener('keyup', this.handleKeyUp);
this.timeLeft = this.gameLength;
if (this.timeLeft > 0) {
this.timer = setInterval(() => {
this.timeLeft--;
if (this.timeLeft === 0) {
clearInterval(this.timer);
window.removeEventListener('keyup', this.handleKeyUp);

}
}, 1000)

}

3. Start your development server, if isn’t already running, and play the game. You should be able
to use your keyboard to answer questions. The spacebar and Enter keys should work like the
Clear button, and the Backspace key should work to delete the last character added.

LESSON 5: Transitions and Animations | 143

EVALUATION COPY: Not to be used in class.

Solution:
Vue/Solutions/transitions-animations/catching-keyboard/MainContainer.vue

-------Lines 1 through 165 Omitted-------
startTimer() {166.
window.addEventListener('keyup', this.handleKeyUp);167.
this.timeLeft = this.gameLength;168.
if (this.timeLeft > 0) {169.
this.timer = setInterval(() => {170.
this.timeLeft--;171.
if (this.timeLeft === 0) {172.
clearInterval(this.timer);173.
window.removeEventListener('keyup', this.handleKeyUp);174.

}175.
}, 1000)176.

}177.
},178.
restart() {179.
this.score = 0;180.
this.startTimer();181.
this.newQuestion();182.

},183.
handleKeyUp(e) {184.
e.preventDefault(); // prevent the normal behavior of the key185.
if (e.keyCode === 32 || e.keyCode === 13) { // space/Enter186.
this.clear();187.

} else if (e.keyCode === 8) { // backspace188.
this.input = this.input.substring(0, this.input.length - 1);189.

} else if (!isNaN(e.key)) {190.
this.setInput(e.key);191.

}192.
}193.

},194.
-------Lines 195 through 291 Omitted-------

Conclusion

In this lesson, you have learned how to use conditional rendering and transitions together to create
dynamic effects and transitions in Vue user interfaces. You have also finished the Mathificent game by
adding a timer and keyboard interaction. Congratulations!

144 | LESSON 5: Transitions and Animations

EVALUATION COPY: Not to be used in class.

LESSON 6
Vue 3 Routing

EVALUATION COPY: Not to be used in class.

Topics Covered

 Routing in a Vue 3 application.

Introduction

All the functionality of our Mathificent app is finished now. But, you may have noticed that the
MainContainer component is rather large and complicated. One of the most important principles of
designing a component-based application is that a component should only do one thing. MainContainer
currently handles both the configuration and game for our app. We can start to make our application
easier to understand and maintain by breaking apart the MainContainer component. We’ll do this
by creating separate components and by implementing routing. Routing refers to the ability to change
what displays in the browser based on the current value of the browser location property. Another
benefit of using routing in Mathificent is that it will give the user a way to return to the configuration
screen at any time, rather than having to wait until the game timer reaches zero.

EVALUATION COPY: Not to be used in class.

❋

6.1. Routing

The location property of the browser is how the browser tracks the current web page being viewed.
However, with JavaScript “single page” applications, the actual web page downloaded to the browser
is always the same (index.html in our case), so we can use the location property to determine which
components are mounted at any one time, without needing to download another file from the server.

First, let’s take a look at how standard web pages work:

LESSON 6: Vue 3 Routing | 145

EVALUATION COPY: Not to be used in class.

1. Visit https://www.wikipedia.org/ in Google Chrome.

2. Open Google Chrome’s Network tab and then clear it by pressing the Clear icon:

3. With the Network tab open, click any link on the page. You will see the Network tab fill up
with downloaded assets:

4. Now open Vue/demo-viewer in VS Code’s terminal by right-clicking the folder and selecting
Open in Integrated Terminal.

146 | LESSON 6: Vue 3 Routing

EVALUATION COPY: Not to be used in class.

https://www.wikipedia.org/

5. Run npm run serve to launch the demo-viewer Vue 3 application.

6. Open and clear Google Chrome’s Network tab.

7. Click around. Notice that the URL changes and the page display changes, but nothing gets
downloaded. This is because each link click does not result in a fresh fetch of a web page from
the web server. Instead, it results in a new router to a different component, which then updates
the DOM.

EVALUATION COPY: Not to be used in class.

❋

6.2. Vue Router

Vue Router is the official router for Vue 3. While it’s not included in the core Vue 3 library’s set of
features, it is maintained and supported by same people who maintain and support Vue 3.

Implementing routes with Vue Router involves the following steps:

1. Define your routes.

2. Create a router instance.

3. Use the router instance.

Let’s take a look at each of these step.

 6.2.1. Defining routes

A route in Vue Router is a JavaScript object containing a path and a component that should be displayed
when the browser’s location matches that path. To define multiple routes, create an array of route
objects. For example, in our app, we’ll start with two routes: the one that displays when you first go
to the app (the "" route) and the one that displays when the path is /play. Here’s what the routes
array should look like to enable these two routes:

const routes = [
{ path: '/', component: GameConfig },
{ path: '/play', component: GamePlay },

];

LESSON 6: Vue 3 Routing | 147

EVALUATION COPY: Not to be used in class.

You can also pass props to routes by adding dynamic parameters to the route. To add a parameter to
a route, preface part of the path with a colon (:) and set the route’s props option to true. In our
game, we’ll be passing the operator and maxNumber values selected on the configuration screen to
the game play screen. Here’s what the routes should look like with these parameters specified:

const routes = [
{ path: '/', component: GameConfig },
{ path: '/play/:operation/:maxNumber', component: GamePlay, props: true },

];

 6.2.2. Creating a router instance

To create a router instance, pass an object containing a history option and the routes you defined into
Vue Router’s createRouter() function. The history option specifies how Vue Router should modify
the browser URL. The options for the history mode are:

Hash mode. Pass the hash mode option using createWebHashHistory(). Hash Mode adds
a hash symbol (#) before the application’s path. The hash symbol causes the browser to not
refresh when a new path is loaded. Hash Mode doesn’t require server configuration and is the
mode that we’ll be using.
HTML5 Mode. HTML5 Mode is the recommended mode for live applications, but it requires
a properly configured server. In HTML5 Mode, the URLs in the browser change without
causing a page refresh.
Memory Mode. Memory mode keeps route information in memory and doesn’t rely on a
browser. This mode is best for server-side applications and mobile apps.

 6.2.3. Using a router instance

To make every component in your app able to use the router, you’ll call Vue 3’s use() function on
your root component, like this:

app.use(router);

 6.2.4. Displaying routes and linking

Once your routes are set up and made available to your components, the only thing left to do is to
choose where the route components will display. To do this, put a router-view component in the
template of the component where you want to display the route components.

148 | LESSON 6: Vue 3 Routing

EVALUATION COPY: Not to be used in class.

To link between routes in your app, you use standard HTML a elements. For example, to make a link
to the /play route, use the following HTML:

Go to the play route

Vue Router can also be controlled programatically by calling methods on the this.$router property.
For example, to change the path to the /play route without the user clicking a link, you can use the
following inside a component:

this.$router.push('/play');

LESSON 6: Vue 3 Routing | 149

EVALUATION COPY: Not to be used in class.

 Exercise 16: Implementing Routes
 15 to 25 minutes

In this exercise, we’ll add routing to the Mathificent app.

1. Open Exercises/mathficent in the terminal.

2. Install Vue Router by running the following command:

npm install vue-router@4

3. Create the shells for two new single-file components in the components directory: GameConfig
and GamePlay:

<template>
GameConfig Component

</template>

<script>
export default {
name: "GameConfig",

};
</script>

<template>
GamePlay Component

</template>

<script>
export default {
name: "GamePlay",

};
</script>

4. In main.js:

A. Import createRouter and createWebHashHistory from vue-router into
main.js:

import { createRouter, createWebHashHistory } from 'vue-router';

150 | LESSON 6: Vue 3 Routing

EVALUATION COPY: Not to be used in class.

B. Import GameConfig and GamePlay into main.js:

import GameConfig from './components/GameConfig.vue';
import GamePlay from './components/GamePlay.vue';

C. Create a routes array in main.js. The play route will take two parameters:
operation and maxNumber. To make these two parameters available as props in
GamePlay, set the props property to true.:

const routes = [
{ path: '/', component: GameConfig },
{ path: '/play/:operation/:maxNumber', component: GamePlay, props:true
},
];

D. Create a router using the routes array:

const router = createRouter({
history: createWebHashHistory(),
routes,

});

E. Remove the existing statement that begins with createApp and replace it with the
following three statements:

const app = createApp(App);
app.use(router);
app.mount('#app');

5. Open MainContainer and move the div element with the id of “config-container” into the
template of GameConfig and delete its v-if directive.

6. Move the div element with the id of “game-container” from MainContainer into the
template of GamePlay and delete its v-if directive. MainContainer should now only have
an empty main tag with the id of “main-container” in its template.

7. Move the imports of SelectInput and PlayButton from MainContainer to the script
element in GameConfig.

8. Move the imports of GameScore, GameTimer, GameEquation, and randInt to the script
element in GamePlay component.

LESSON 6: Vue 3 Routing | 151

EVALUATION COPY: Not to be used in class.

9. Add a components property to GameConfig and GamePlay with the appropriate imported
components.

10. Put a routerview component inside the div in MainContainer’s template:

<main id="main-container">
<router-view></router-view>

</main>

11. Remove the components property and its contents from MainContainer.

12. Move the following data properties from MainContainer to GameConfig:

operations
operation
maxNumber

13. Move the following data properties from MainContainer to GamePlay:

buttons
input
operands
answered
score
gameLength
timeLeft

When you finish, the MainContainer should only have one data property: screen.

14. Delete the data property from MainContainer along with the screen property. In switching
to using routes, we won’t be needing that anymore.

15. Move the play() method from MainContainer to GameConfig.

16. Move all of the other methods from MainContainer to GamePlay.

17. Move the numbers computed property from MainContainer to GameConfig.

18. Move the question and equationClass computed properties from MainContainer to
GamePlay.

19. Move all of the styles except the main-container style from MainContainer to GamePlay.

152 | LESSON 6: Vue 3 Routing

EVALUATION COPY: Not to be used in class.

20. Add a props object to GamePlay to receive the props from the router.

props: {
operation: String,
maxNumber: String,

},

21. Modify the config() in GamePlay to redirect the browser to the config route at /:

config() {
this.$router.push('/');

},

22. Add the mounted() lifecycle method to GamePlay to start the game automatically when it’s
loaded:

mounted() {
this.newQuestion();
this.startTimer();

},

23. Modify the play() method in GameConfig to redirect to the play route and pass the values
of operation and maxNumber in the URL:

play() {
this.$router.push(
'/play/' + this.operation + '/' + this.maxNumber

);
},

24. In the play() method, wrap this.operation with the encodeURIcomponent function to
encode the value of this.operation safely for URLs. This is necessary, because passing the
symbol for division (/) in the URL would cause the browser to interpret it as part of the URL,
rather than as part of the parameters passed in the URL.

play() {
this.$router.push(
'/play/' + encodeURIComponent(this.operation) + '/' + this.maxNumber

);
},

LESSON 6: Vue 3 Routing | 153

EVALUATION COPY: Not to be used in class.

25. Start up the application and test it out!

Congratulations! You now have routing set up!

154 | LESSON 6: Vue 3 Routing

EVALUATION COPY: Not to be used in class.

LESSON 6: Vue 3 Routing | 155

EVALUATION COPY: Not to be used in class.

Solution: Vue/Solutions/routing/main.js

import { createApp } from 'vue';1.
import { createRouter, createWebHashHistory } from 'vue-router';2.
import App from './App.vue';3.
import GameConfig from './components/GameConfig';4.
import GamePlay from './components/GamePlay';5.

6.
const routes = [7.
{ path: '/', component: GameConfig },8.
{ path: '/play/:operation/:maxNumber', component: GamePlay, props: true },9.

];10.
11.

const router = createRouter({12.
history: createWebHashHistory(),13.
routes,14.

});15.
16.

const app = createApp(App);17.
app.use(router);18.
app.mount('#app');19.

Solution: Vue/Solutions/routing/MainContainer.vue

<template>1.
<main id="main-container">2.
<router-view></router-view>3.

</main>4.
</template>5.

6.
<script>7.
export default {8.
name: 'MainContainer',9.
components: {},10.

};11.
</script>12.

13.
<style scoped>14.
#main-container {15.
margin: auto;16.
width: 380px;17.

}18.
</style>19.

156 | LESSON 6: Vue 3 Routing

EVALUATION COPY: Not to be used in class.

Solution: Vue/Solutions/routing/GameConfig.vue

<template>1.
<div id="config-container">2.
<h1>Mathificent</h1>3.
<SelectInput4.
:currentValue="operation"5.
label="Operation"6.
id="operation"7.
v-model="operation"8.
:options="operations"9.
@input="(o) => (this.operation = o)"10.

/>11.
<SelectInput12.
:currentValue="maxNumber"13.
label="Maximum Number"14.
id="max-number"15.
v-model="maxNumber"16.
:options="numbers"17.
@input="(n) => (this.maxNumber = n)"18.

/>19.
<PlayButton @play-button-click="play" />20.

</div>21.
</template>22.

23.
<script>24.
import SelectInput from './SelectInput';25.
import PlayButton from './PlayButton';26.
export default {27.
name: 'GameConfig',28.
components: {29.
SelectInput,30.
PlayButton,31.

},32.
data: function () {33.
return {34.
operations: [35.
['Addition', '+'],36.
['Subtraction', '-'],37.
['Multiplication', 'x'],38.
['Division', '/'],39.

],40.
operation: 'x',41.
maxNumber: '10',42.

};43.
},44.

LESSON 6: Vue 3 Routing | 157

EVALUATION COPY: Not to be used in class.

methods: {45.
play() {46.
this.$router.push(47.
'/play/' + encodeURIComponent(this.operation) + '/' + this.maxNumber48.

);49.
},50.

},51.
computed: {52.
numbers: function () {53.
const numbers = [];54.
for (let number = 2; number <= 100; number++) {55.
numbers.push([number, number]);56.

}57.
return numbers;58.

},59.
},60.

};61.
</script>62.

158 | LESSON 6: Vue 3 Routing

EVALUATION COPY: Not to be used in class.

Solution: Vue/Solutions/routing/GamePlay.vue

<template>1.
<div id="game-container" class="text-center">2.
<transition name="slide">3.
<template v-if="timeLeft === 0">4.
<div>5.
<h2>Time's Up!</h2>6.
<strong class="big">You Answered7.
<div class="huge">{{ score }}</div>8.
<strong class="big">Questions Correctly9.
<button10.
class="btn btn-primary form-control m-1"11.
v-on:click="restart()"12.

>13.
Play Again with Same Settings14.

</button>15.
<button16.
class="btn btn-secondary form-control m-1"17.
v-on:click="config()"18.

>19.
Change Settings20.

</button>21.
</div>22.

</template>23.
</transition>24.
<transition name="slide-right">25.
<template v-if="timeLeft > 0">26.
<div>27.
<div class="row border-bottom" id="scoreboard">28.
<div class="col px-3 text-left">29.
<GameScore :score="score" />30.

</div>31.
<div class="col px-3 text-right">32.
<GameTimer :timeLeft="timeLeft" />33.

</div>34.
</div>35.
<div :class="equationClass" id="equation">36.
<GameEquation37.
:question="question"38.
:answer="input"39.
:answered="answered"40.

/>41.
</div>42.
<div class="row" id="buttons">43.
<div class="col">44.

LESSON 6: Vue 3 Routing | 159

EVALUATION COPY: Not to be used in class.

<button45.
class="btn btn-primary number-button"46.
v-for="button in buttons"47.
:key="button"48.
@click="setInput(button)"49.

>50.
{{ button }}51.

</button>52.
<button class="btn btn-primary" id="clear-button" @click="clear">53.

Clear54.
</button>55.

</div>56.
</div>57.

</div>58.
</template>59.

</transition>60.
</div>61.

</template>62.
<script>63.
import GameScore from './GameScore';64.
import GameTimer from './GameTimer';65.
import GameEquation from './GameEquation';66.
import { randInt } from '../helpers/helpers';67.
export default {68.
name: 'GamePlay',69.
components: {70.
GameScore,71.
GameTimer,72.
GameEquation,73.

},74.
data: function () {75.
return {76.
buttons: [1, 2, 3, 4, 5, 6, 7, 8, 9, 0],77.
input: '',78.
operands: { num1: '1', num2: '1' },79.
answered: false,80.
score: 0,81.
gameLength: 60,82.
timeLeft: 0,83.

};84.
},85.
props: {86.
operation: String,87.
maxNumber: String,88.

},89.

160 | LESSON 6: Vue 3 Routing

EVALUATION COPY: Not to be used in class.

methods: {90.
config() {91.
this.$router.push('/');92.

},93.
94.

setInput(value) {95.
this.input += String(value);96.
this.input = String(Number(this.input));97.
this.answered = this.checkAnswer(98.
this.input,99.
this.operation,100.
this.operands101.

);102.
if (this.answered) {103.
setTimeout(this.newQuestion, 300);104.
this.score++;105.

}106.
},107.
clear() {108.
this.input = '';109.

},110.
getRandNumbers(operator, low, high) {111.
let num1 = randInt(low, high);112.
let num2 = randInt(low, high);113.
const numHigh = Math.max(num1, num2);114.
const numLow = Math.min(num1, num2);115.

116.
if (operator === '-') {117.
// Make sure higher num comes first118.
num1 = numHigh;119.
num2 = numLow;120.

}121.
122.

if (operator === '/') {123.
if (num2 === 0) {124.
// No division by zero125.
num2 = randInt(1, high);126.

}127.
num1 = num1 * num2;128.

}129.
return { num1, num2 };130.

},131.
checkAnswer(userAnswer, operation, operands) {132.
if (isNaN(userAnswer)) return false; // User hasn't answered133.

134.

LESSON 6: Vue 3 Routing | 161

EVALUATION COPY: Not to be used in class.

let correctAnswer;135.
switch (operation) {136.
case '+':137.
correctAnswer = operands.num1 + operands.num2;138.
break;139.

case '-':140.
correctAnswer = operands.num1 - operands.num2;141.
break;142.

case 'x':143.
correctAnswer = operands.num1 * operands.num2;144.
break;145.

default: // division146.
correctAnswer = operands.num1 / operands.num2;147.

}148.
return parseInt(userAnswer) === correctAnswer;149.

},150.
newQuestion() {151.
this.input = '';152.
this.answered = false;153.
this.operands = this.getRandNumbers(this.operation, 0, this.maxNumber);154.

},155.
startTimer() {156.
window.addEventListener('keyup', this.handleKeyUp);157.
this.timeLeft = this.gameLength;158.
if (this.timeLeft > 0) {159.
this.timer = setInterval(() => {160.
this.timeLeft--;161.
if (this.timeLeft === 0) {162.
clearInterval(this.timer);163.
window.removeEventListener('keyup', this.handleKeyUp);164.

}165.
}, 1000);166.

}167.
},168.
restart() {169.
this.score = 0;170.
this.startTimer();171.
this.newQuestion();172.

},173.
handleKeyUp(e) {174.
e.preventDefault(); // prevent the normal behavior of the key175.
if (e.keyCode === 32 || e.keyCode === 13) {176.
// space/Enter177.
this.clear();178.

} else if (e.keyCode === 8) {179.

162 | LESSON 6: Vue 3 Routing

EVALUATION COPY: Not to be used in class.

// backspace180.
this.input = this.input.substring(0, this.input.length - 1);181.

} else if (!isNaN(e.key)) {182.
this.setInput(e.key);183.

}184.
},185.

},186.
mounted() {187.
this.newQuestion();188.
this.startTimer();189.

},190.
computed: {191.
question: function () {192.
const num1 = this.operands.num1;193.
const num2 = this.operands.num2;194.
const equation = `${num1} ${this.operation} ${num2}`;195.
return equation;196.

},197.
equationClass: function () {198.
if (this.answered) {199.
return 'row text-primary my-2 fade';200.

} else {201.
return 'row text-secondary my-2';202.

}203.
},204.

},205.
};206.
</script>207.
<style scoped>208.
button.number-button {209.
border-radius: 0.25em;210.
font-size: 3em;211.
height: 2em;212.
margin: 0.1em;213.
text-align: center;214.
width: 2em;215.

}216.
217.

#clear-button {218.
border-radius: 0.25em;219.
font-size: 3em;220.
height: 2em;221.
margin: 0.1em;222.
text-align: center;223.
width: 4.2em;224.

LESSON 6: Vue 3 Routing | 163

EVALUATION COPY: Not to be used in class.

}225.
226.

#scoreboard {227.
font-size: 1.5em;228.

}229.
230.

.big {231.
font-size: 1.5em;232.

}233.
234.

.huge {235.
font-size: 5em;236.

}237.
238.

.slide-leave-active,239.

.slide-enter-active {240.
position: absolute;241.
top: 56px;242.
transition: 1s;243.
width: 380px;244.

}245.
246.

.slide-enter-from {247.
transform: translate(-100%, 0);248.
transition: opacity 0.5s;249.

}250.
251.

.slide-leave-to {252.
opacity: 0;253.
transform: translate(100%, 0);254.

}255.
256.

.slide-right-leave-active,257.

.slide-right-enter-active {258.
position: absolute;259.
top: 56px;260.
transition: 1s;261.
width: 380px;262.

}263.
264.

.slide-right-enter-from {265.
transform: translate(100%, 0);266.
transition: opacity 0.5s;267.

}268.
269.

164 | LESSON 6: Vue 3 Routing

EVALUATION COPY: Not to be used in class.

.slide-right-leave-to {270.
opacity: 0;271.
transform: translate(-100%, 0);272.

}273.
</style>274.

Conclusion

In this lesson, you have learned about routing and how Vue Router makes it possible to change the
component being displayed based on the browser’s location property.

LESSON 6: Vue 3 Routing | 165

EVALUATION COPY: Not to be used in class.

	Getting Started with Vue 3
	Unpacking Vue 3
	Exercise 1: Vue 3 Hello, World!
	Introducing Our Project: Mathificent
	Exercise 2: Get Started with vue-cli
	Exercise 3: Learning the Structure of a Vue App

	Basic Vue Features
	The Vue Instance
	Writing Vue Templates
	Exercise 4: Writing Templates
	Using Components Inside Components
	Exercise 5: Breaking an App into Components
	Passing Data to Child Components
	Dynamic Data in Templates
	Computed Properties
	The data Object
	The methods Object
	Instance Lifecycle Hooks

	Directives
	Directives
	Conditionals with v-if / v-else-if / v-else
	Two-way Binding with v-model
	One-way Data Binding, Repeating, and Event Handling
	Repeating an Element using v-for
	Event Handling
	Putting it All Together
	Emitting Custom Events

	Implementing Game Logic
	Exercise 6: Passing Data Between Components
	Exercise 7: Vue Data Binding
	Exercise 8: Implementing Conditional Rendering
	Exercise 9: Improving the Form Layout
	Exercise 10: Making the Game UI
	Exercise 11: Capturing Form Events
	Exercise 12: Setting the Equation

	Transitions and Animations
	Using the transition Component
	Exercise 13: Adding the Timer
	Exercise 14: Adding Transitions
	Exercise 15: Catching Keyboard Events

	Vue 3 Routing
	Routing
	Vue Router
	Exercise 16: Implementing Routes

