
React Training

with examples and
hands-on exercises

WEBUCATOR

Copyright © 2023 by Webucator. All rights reserved.

No part of this manual may be reproduced or used in any manner without written permission of the
copyright owner.

Version: 2.0.2

The Authors

Chris Minnick

Chris Minnick, the co-founder of WatzThis?, has overseen the development of hundreds of web and
mobile projects for customers from small businesses to some of the world’s largest companies. A prolific
writer, Chris has authored and co-authored books and articles on a wide range of Internet-related topics
including HTML, CSS, mobile apps, e-commerce, e-business, Web design, XML, and application
servers. His published books include Adventures in Coding, JavaScript For Kids For Dummies, Writing
Computer Code, Coding with JavaScript For Dummies, Beginning HTML5 and CSS3 For Dummies,
Webkit For Dummies, CIW E-Commerce Designer Certification Bible, and XHTML.

Nat Dunn (Editor)

Nat Dunn is the founder of Webucator (www.webucator.com), a company that has provided training
for tens of thousands of students from thousands of organizations. Nat started the company in 2003
to combine his passion for technical training with his business expertise, and to help companies benefit
from both. His previous experience was in sales, business and technical training, and management. Nat
has an MBA from Harvard Business School and a BA in International Relations from Pomona College.

Follow Nat on Twitter at @natdunn and Webucator at @webucator.

Class Files

Download the class files used in this manual at
https://static.webucator.com/media/public/materials/classfiles/REA101-2.0.2.zip.

Errata

Corrections to errors in the manual can be found at https://www.webucator.com/books/errata/.

https://static.webucator.com/media/public/materials/classfiles/REA101-2.0.2.zip
https://www.webucator.com/books/errata/

Table of Contents

LESSON 1. Introduction to React..1
What is React?..1
React Essentials..3

Exercise 1: Get Started with Create React App...6
Introducing Our Project: Mathificent...7

Exercise 2: Learning the Structure of a React App..10
LESSON 2. JSX and React Elements..15

Using JSX in React...15
JSX Rules...19

Exercise 3: Using JSX..21
LESSON 3. React Components..27

Assembling User Interfaces..27
Exercise 4: Breaking an App into Components...31
Exercise 5: Passing Props Between Components..40
Exercise 6: Organizing Your Components...46

Semantic HTML and the Fragment Element...48
Exercise 7: Using Fragment..51

Destructuring props..52
LESSON 4. React State...55

Understanding State...55
Getting React to React..58
Why is count a Constant?...61
Child Components and State..62

Exercise 8: Adding State..70
LESSON 5. React Routing...77

Routing...77
Exercise 9: Implementing Routes...80

Table of Contents | i

LESSON 6. Styling React Apps..87
Plain-old CSS...87
Importing CSS Modules to Components..89

Exercise 10: Cleaning Up App.css...90
Exercise 11: Styling the Main Component..93
Exercise 12: Improving the Operation Dropdown..98

Inline Styles..100
Exercise 13: Creating the Game Component..102

A Word of Caution..111
LESSON 7. Implementing Game Logic..115

Exercise 14: Setting the Equation...116
Exercise 15: Getting the User’s Answer..122
Exercise 16: Checking the User’s Answer...128
Exercise 17: Creating the Timer...136

LESSON 8. React Effects..143
React Hooks..143
The useEffect Hook...144
useEffect to the Rescue..146
Mount and Unmount...149
Passing Functions to State Variable Setters..151

Exercise 18: Fixing the Timer...154
Exercise 19: Catching Keyboard Events..159

Building and Deploying Your React App...161

ii | Table of Contents

LESSON 1
Introduction to React

Topics Covered

 The benefits of writing user interfaces with React.

 Data flow in a React user interface.

 React components.

 Create React App.

Introduction

React is a JavaScript library for creating dynamic website user interfaces. A dynamic website user
interface is one that changes (or “reacts”) in response to events, such as the user clicking a button or
typing into a form. This lesson introduces you to the most important concepts and terms that are used
in React.

❋

1.1. What is React?

React was created by Facebook to make it easier to make dynamic websites. A company as large as
Facebook faces several challenges when designing and maintaining their website. The website must be:

1. Fast.

2. Scalable, so that it can grow and support increasing numbers of users.

3. Reliable.

Here’s how React addresses each of these challenges:

 1.1.1. React is Fast

When you make use of content on the web, you use a program called a user agent. Most of the time,
that user agent is a web browser.

LESSON 1: Introduction to React | 1

The content that is displayed in a web browser can change over time using two different methods:

1. Loading a new page: This can be done by entering a new address into a browser’s address
bar, clicking a link, or submitting a form that loads a new HTML page.

2. Using JavaScript to modify the current page: Updating the web page using JavaScript can
result in a better user experience, because the whole page doesn’t need to be reloaded with
each change. This allows for effects like “infinite scroll,” in which images or posts are loaded
as you scroll down a page (similar to a Facebook or Twitter feed), and for web applications
like email readers and web-based financial programs to rival the user experience of “native”
desktop and mobile applications.

The Document Object Model (DOM) is the Application Programming Interface (API) for the web
browser. It gives JavaScript programs access to the properties and functionality of the web browser.
Using the DOM, it is possible to add content, remove content, rearrange content, and load new content
into a web browser. We call using the DOM to change the web page contents “DOM Manipulation”
and it is at the heart of modern web applications.

However, all of this changing of content using the DOM has a cost. If you don’t do it right, or if you
do too much of it, your web page (or mobile app) will seem sluggish to the user. With React, Facebook
rethought how DOM manipulation is done to minimize and optimize it as much as possible.

 1.1.2. React is Scalable

React allows you to assemble (or “compose”) user interfaces using reusable components. Every React
application is made up a collection of components that you can use like HTML elements to build
small, simple applications and large complex ones. As a programmer, you can think about your user
interface as if the entire thing is constantly being re-rendered, and React manages actual updates to
what appears in the browser so as to give the user the best and fastest experience possible.

 1.1.3. React is Reliable

React is currently used in many of the largest and most visited websites and mobile apps in the world.
It is well-supported by legions of developers and, when used correctly, it is a dependable and stable
library. Because React is only concerned with the user interface, the actual React library is relatively
small when compared with more full-featured frameworks such as Angular, Ember, or Dojo. When
something does go wrong in a React application, it is usually because of the incorrect use of a JavaScript
feature rather than a problem with React itself. In general, React requires developers to have a better
understanding of JavaScript, and having this advanced JavaScript knowledge makes for more robust
applications.

❋

2 | LESSON 1: Introduction to React

EVALUATION COPY: Not to be used in class.

1.2. React Essentials

Let’s examine the fundamental aspects of React, including how it renders components, manages data,
and updates the browser.

Node, npm, and npx

React developers use Node to compile and test their applications. You should have installed
Node when setting up for this course. Follow the instructions at https://www.webuca
tor.com/article/nodejs-and-node-package-manager-npm/ to check whether you have
the latest version of Node installed and to install it if not.

Node comes with npm, a Node package manager, and npx, which downloads and executes a
Node package in a single step. npx is used to create React applications.

 1.2.1. Rendering in React

React components are made up of JavaScript modules that define React elements. A React component
is a JavaScript function that renders a piece of the HTML user interface. The following demo shows
a basic React component that simply prints out a message to the browser:

Demo 1.1: React/demo-viewer/src/Demos/SayHello.js

import React from 'react';1.
2.

function SayHello() {3.
return (4.
<h1>Hello, world!</h1>5.

);6.
}7.

8.
export default SayHello;9.

Code Explanation

1. Each React component contains a return statement. When assembled together, these React
components and their return statements define how the final user interface will look and
behave.

LESSON 1: Introduction to React | 3

https://www.webucator.com/article/nodejs-and-node-package-manager-npm/
https://www.webucator.com/article/nodejs-and-node-package-manager-npm/

2. To run this file, open React/demo-viewer in the terminal by right-clicking the folder and
selecting Open in Integrated Terminal:

3. You must first install npm in the demo-viewer folder by running:

npm install

4. Once npm is installed, run npm start. This will launch your React app using a development
server. A development server is a web server that runs on a single software developer’s computer
and makes it possible for the developer to test out code as it is written and modified, without
having to make it available for use by the entire internet. After the development server is
launched, a web browser window will open at http://localhost:3000 showing our
demo-viewer React application. Click the SayHello link under Introduction to React. You
should see a page that looks like this:

5. Right-click the page in the browser and select View page source. You should see the following:

4 | LESSON 1: Introduction to React

EVALUATION COPY: Not to be used in class.

http://localhost:3000

Notice that the “Hello, world!” div does not show up in the page source. That is because it
was added using DOM manipulation after the browser loaded the page. However, that happens
so fast, that the user never sees that change.

6. Back in the terminal, press CTRL+C to stop the app.

7. Close the terminal by pressing the trash can icon.

Class Components

The component in the preceding demo is a function component, meaning it is created using a
JavaScript function. You can also create React components using classes. Doing so requires more
advanced knowledge of JavaScript. In modern versions of React (16.8 and later), function
components are much more flexible. As such, many React developers are switching from writing
class components to function components. In this course, we only teach function components.

LESSON 1: Introduction to React | 5

 Exercise 1: Get Started with Create React
App

 15 to 25 minutes

In this exercise, you will use a Node package called Create React App to create your first React
application, which will serve as the starting point for the math game we’ll be building in the rest of the
course. After you’ve built your React application, you’ll use npm to package and deploy the application
to a development server and open it in a browser.

Best of all, most of the process of building a simple application and installing the Node packages and
scripts that make it run is done by Create React App. This makes it easy for anyone with even the most
basic knowledge of JavaScript and React to quickly start working on a project. So, let’s jump in!

1. From your class files, open React/Exercises in the terminal by right-clicking the folder
and selecting Open in Integrated Terminal:

2. Run npx create-react-app mathificent in the terminal to create a starter project named
mathificent. The dependencies will be downloaded and after a few minutes you’ll have a
new React project.

3. Run cd mathificent to make your new React project the working directory. At this point,
your first React program has been created and you can look at the individual files that it is
made of:

6 | LESSON 1: Introduction to React

EVALUATION COPY: Not to be used in class.

4. Run npm start. It will start the local development server and open a browser window with
your new React website:

5. Back in the terminal, press CTRL+C to stop the app.

6. Close the terminal window by pressing the trash can icon.

❋

1.3. Introducing Our Project: Mathificent

Throughout these lessons, you’ll be using the latest React syntax and techniques to build a single-page
application for practicing arithmetic. The application you’ll be building is based on the game Mathificent,
which you can view at https://www.mathificent.com. It consists of the following three views:

LESSON 1: Introduction to React | 7

https://www.mathificent.com

Config View

Game View

8 | LESSON 1: Introduction to React

EVALUATION COPY: Not to be used in class.

Times-Up View

LESSON 1: Introduction to React | 9

 Exercise 2: Learning the Structure of a
React App

 15 to 25 minutes

In this exercise, you will start with the boilerplate Create React App project you created and make some
modifications to learn about the different files involved in React applications and the different parts
of those files.

1. From the mathificent directory, open src/App.js for editing.

2. Take a look at the structure of this file. It imports the React library and contains a function
with a return statement. This function creates a component. The job of a component is to
return (output) a piece of the user interface. The final statement in a React component is the
export statement, which makes the file into a JavaScript module that can be imported into
other files.

10 | LESSON 1: Introduction to React

EVALUATION COPY: Not to be used in class.

3. Open src/index.js in your editor. This is the main JavaScript file for the entire React
application. This file is the only place in your application that imports and uses the
ReactDOM/client library, which handles rendering of elements into the DOM:

import ReactDOM from 'react-dom/client';
ReactDOM.createRoot(document.getElementbyId('root'));
root.render(
<React.StrictMode>
<App />

</React.StrictMode>
);

React.StrictMode

The React.StrictMode element is used to highlight potential problems with your
application. It is not required. The preceding code could be written like this:

ReactDOM.createRoot(document.getElementById('root'));
root.render(<App />);

For more information, see https://reactjs.org/docs/strict-mode.html

4. In index.js, comment out the import statement that imports App:

//import App from './App';

5. Save your file.

6. If your development server isn’t already running, start it by running:

npm start

7. Once the development server starts up, your default web browser will load http://local
host:3000, where you’ll see an error message, as shown here:

LESSON 1: Introduction to React | 11

https://reactjs.org/docs/strict-mode.html

8. Read the error message, then return to your editor an remove the single-line comment before
the import statement and save the file.

9. Return to your web browser and the application should refresh and be working again. Because
React applications are made up of components that are linked together using import statements
and any one file may have many import statements, one of the most common errors that you
will see in React development is caused by a component or file not being imported, or not
being imported correctly.

10. Look at the ReactDOM.createRoot() statement statement in index.js.
ReactDOM.createRoot() is a method whose job it is to control the contents of an element
in a web page. ReactDOM.createRoot() takes one argument, the location where you want
to render a component. Once you’ve used createRoot() to specify this location, you can
use the render() method to actually render a component. The render() method takes one
argument: the component you want to render. Because every component in a React application
is linked together, render() only needs to specifically render a single component, and that
single component contains all the other components in the application. We call the single
component that contains all the others the “root” component. In our application, App is the
root component:

root.render(<App />);

11. Look at the argument passed to ReactDOM.createRoot():

ReactDOM.createRoot(document.getElementById('root'));

This is a DOM method that locates an HTML element in the browser using the value of its
id attribute. In a default Create React App program, the id attribute value

12 | LESSON 1: Introduction to React

EVALUATION COPY: Not to be used in class.

ReactDOM.createRoot() looks for is “root”, but it can be anything, as long as that element
exists and you reference it correctly in the ReactDOM.createRoot() method call.

12. Open public/index.html in your editor. This is the HTML file that is loaded when your
web browser loads http://localhost:3000. Find the element with the “root” id:

<div id="root"></div>

This is where index.js will render the root component for your application.

13. Notice that index.html doesn’t have any code that imports index.js. This is because in
dex.html is a template. When you start the Create React App development server (using npm
start), the code in index.js (and therefore everything that it imports) is linked to the in
dex.html with <script> tags before the page opens in your web browser.

14. Open App.js in your editor.

15. Find the <header> and </header> tags and delete everything between them except for the
img tag. Your App.js file should now look like this:

import React from 'react';
import logo from './logo.svg';
import './App.css';

function App() {
return (
<div className="App">
<header className="App-header">

</header>
</div>

);
}

export default App;

16. Insert an <h1> element above the image, containing the title of our app:

<h1>Mathificent</h1>

17. Return to your web browser where the app is open and running. If you did everything correctly,
you’ll see the following:

LESSON 1: Introduction to React | 13

.

18. If you see an error message, return to your App.js file and make sure that it matches the
solution exactly.

19. Remember to stop the app (CTRL+C) and close the terminal when you are done.

Solution: React/Solutions/introduction-to-react/App.js

import React from 'react';1.
import logo from './logo.svg';2.
import './App.css';3.

4.
function App() {5.
return (6.
<div className="App">7.
<header className="App-header">8.
<h1>Mathificent</h1>9.
10.

</header>11.
</div>12.

);13.
}14.

15.
export default App;16.

Conclusion

In this lesson, you have learned about the essential components of a React application, including how
React uses JavaScript modules to define components that can be assembled together using React
elements.

14 | LESSON 1: Introduction to React

EVALUATION COPY: Not to be used in class.

LESSON 2
JSX and React Elements

Topics Covered

 The role of JSX in React.

 JSX vs. HTML.

 Expressions in JSX.

Introduction

JSX is the template language used by React to generate HTML user interfaces.

❋

2.1. Using JSX in React

JSX is an XML-based template language that simplifies the use of React to produce HTML. When
used in a React component’s return statement for a function component, JSX looks and behaves
similarly to HTML code. However, behind the scenes, JSX is actually just a shorthand for React’s
createElement() function. To illustrate, take a look at the following React component, which we
saw in the previous lesson:

Demo 2.1: React/demo-viewer/src/Demos/SayHello.js

import React from 'react';1.
2.

function SayHello() {3.
return (4.
<h1>Hello, world!</h1>5.

);6.
}7.

8.
export default SayHello;9.

This component does what you would think: it causes an HTML h1 element containing the words
“Hello, world!” to be rendered. The JSX code is everything inside of the return statement. Inside

LESSON 2: JSX and React Elements | 15

React, this JSX code gets compiled into a JavaScript statement before it runs in the browser. Here’s
what it looks like compiled into JavaScript:

import React from 'react';

function SayHello() {
return (
React.createElement("h1", null, "Hello, world!");

);
}

export default SayHello;

JSX was created by Facebook to give programmers an easier way to write React.createElement()
statements. When you start to have nested elements with attributes, it quickly becomes apparent how
much easier JSX is to read than the native React JavaScript. For example, consider the following
component:

Demo 2.2: React/demo-viewer/src/Demos/JSXForm.js

import React from 'react';1.
2.

function JSXForm() {3.
return (4.
<div>5.
<h1>Your Name Please</h1>6.
<form>7.
<label htmlFor="first-name">First Name: </label>8.
<input type="text" id="first-name" />
9.
<label htmlFor="last-name">Last Name: </label>10.
<input type="text" id="last-name" />
11.
<button>Submit</button>12.

</form>13.
</div>14.

);15.
}16.

17.
export default JSXForm;18.

Code Explanation

The JSXForm component shown in the demo above returns an HTML form written in JSX. Written
using native React.createElement() statements, that same form would be coded like this:

16 | LESSON 2: JSX and React Elements

EVALUATION COPY: Not to be used in class.

React.createElement("div", null,
React.createElement("h1", null, "Your Name Please"),
React.createElement("form", null,
React.createElement("label",
{
htmlFor: "first-name"

}, "First Name: "),
React.createElement("input",
{
type: "text",
id: "first-name"

}),
React.createElement("br", null),
React.createElement("label",
{
htmlFor: "last-name"

}, "Last Name: "),
React.createElement("input",
{
type: "text",
id: "last-name"

}),
React.createElement("br", null),
React.createElement("button",
{
onClick: "submitForm"

}, "Submit")
)

);

The JSX version is much easier to read and to visualize than the version written using
React.createElement() statements.

1. To run this file, open React/demo-viewer in the terminal by right-clicking the folder and
selecting Open in Integrated Terminal:

LESSON 2: JSX and React Elements | 17

2. Run npm start to launch the demo-viewer React application.

3. Click the JSXForm link under JSX and React Elements. You should see a page that looks
like this:

4. Back in the terminal, press CTRL+C to stop the app.

5. Close the terminal by pressing the trash can icon.

❋

18 | LESSON 2: JSX and React Elements

EVALUATION COPY: Not to be used in class.

2.2. JSX Rules

 2.2.1. JSX Syntax

1. JSX is XML-based. That means all tags, including empty tags, must be closed. The following
code is not valid JSX:

Adding the shortcut close makes it valid:

2. Tags that are meant to be output as HTML must be all lowercase.

3. Tags that reference React components must be UpperCamelCase.

4. JSX attributes are written in lowerCamelCase. For example, onclick becomes onClick.

 2.2.2. JSX is an Extension of JavaScript

While JSX looks a lot like HTML, it is important to remember that it is in fact an extension of
JavaScript. And because JavaScript and HTML share some of the same keywords, JSX cannot use all
of the HTML keywords. For example, in the JSX example from earlier, the label element includes
an attribute called htmlFor:

React.createElement("label",
{
htmlFor: "first-name"

}

In HTML, this attribute, which indicates what the label relates to, is the for attribute. However,
because JSX is actually JavaScript code and because for has a special meaning in JavaScript, it is
necessary to use htmlFor instead of for in JSX.

In addition to htmlFor, the other common change that you need to be aware of when you write JSX
is to the class attribute. The HTML class attribute is used to apply CSS classes to an HTML
element. However, class has a completely different meaning in JavaScript. To avoid conflict, class
needs to be changed to className in JSX.

LESSON 2: JSX and React Elements | 19

 2.2.3. Using Custom Elements in JSX

The result of defining a React component is a React element that has the same name as the component
that can be used inside other components. Custom React JSX element names always start with a capital
letter, as opposed to the HTML equivalent elements, which always start with lower case letters.

This is perhaps the most important thing to understand about JSX in React: when you write JSX code,
you are not directly writing the HTML that will appear in the browser. Instead, you are writing the
JavaScript that will write the HTML in the browser.

 2.2.4. Using JavaScript in JSX

Since JSX is a template language for writing JavaScript, it is easy to include any bit of JavaScript code
that you want to run inside your JSX. The only difference between writing JavaScript code inside of
JSX and writing it in a function is that you need to surround any JavaScript inside of JSX code with
curly braces ({ and }) to indicate that it shouldn’t be interpreted as JSX.

As we will see in the following exercise, it is easy to use variables and simple conditional logic inside of
JSX code.

20 | LESSON 2: JSX and React Elements

EVALUATION COPY: Not to be used in class.

 Exercise 3: Using JSX
 15 to 25 minutes

In this exercise, you will use JSX to create a user interface in React.

1. To add style to the app, we will use Bootstrap:

A. Open index.html from the mathificent/public directory in Visual Studio Code.

B. Copy the following <link> tag:

<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/boot ↵↵
strap.min.css" rel="stylesheet" integrity="sha384-1BmE4kWBq78iYhFldvKuhf ↵↵
TAU6auU8tT94WrHftjDbrCEXSU1oBoqyl2QvZ6jIW3" crossorigin="anonymous">

Paste it in the head in index.html.

C. Copy the following <script> tag:

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/js/boot ↵↵
strap.bundle.min.js" integrity="sha384-ka7Sk0Gln4gmtz2MlQnikT1wX ↵↵
gYsOg+OMhuP+IlRH9sENBO0LRn5q+8nbTov4+1p" crossorigin="anonymous"></script>

Paste it immediately before the close </body> in index.html.

D. Change the title from “React App” to “Mathificent!”

2. Open src/App.js in your editor.

LESSON 2: JSX and React Elements | 21

3. Inside the return statement of the function, replace the existing <header> element with the
header navigation for our app:

<header>
<nav className="navbar navbar-expand-lg navbar-dark bg-dark">
<div className="container-fluid">
<button className="navbar-toggler" type="button"
data-bs-toggle="collapse" data-bs-target="#navbarText">

</button>
<div className="collapse navbar-collapse" id="navbarText">

<ul className="navbar-nav mr-auto text-left">
<li className="nav-item active">

Home

</div>
Mathificent

</div>
</nav>

</header>

A Shortcut: Copy and Paste

You can copy and paste from Exercises/starter-code.txt if you would prefer not
to type this out. You will find both this header element and the footer element (shown
in step 7) in that document. If you do so, be sure to review both carefully, so you
understand what’s going on. They both include some Bootstrap classes, and the footer
includes some JavaScript enclosed in curly braces.

4. Because the app no longer uses the React logo, delete the import statement that imports the
logo.

5. Save App.js.

6. Below the header, add the <h1> element containing the name of the app:

<h1>Mathificent</h1>

22 | LESSON 2: JSX and React Elements

EVALUATION COPY: Not to be used in class.

7. Under the h1 element, type the footer:

<footer className="navbar fixed-bottom bg-dark">
<div className="container-fluid">

Copyright © {new Date().getFullYear()} Webucator

</div>

</footer>

The JavaScript in the footer will dynamically populate the copyright year. Notice that it is
enclosed in curly braces. This lets React know that it should be interpreted.

8. If your app isn’t already running, cd to your mathificent directory and run npm start
and then open your browser to http://localhost:3000 (if it doesn’t automatically open).
You should now have a header, main content of the page with the h1 element, and a footer.

LESSON 2: JSX and React Elements | 23

Solution: React/Solutions/jsx-react-elements/App.js

import React from 'react';1.
import './App.css';2.

3.
function App() {4.
return (5.
<div className="App">6.

<header>7.
<nav className="navbar navbar-expand-lg navbar-dark bg-dark">8.
<div className="container-fluid">9.
<button className="navbar-toggler" type="button"10.
data-bs-toggle="collapse" data-bs-target="#navbarText">11.
12.

</button>13.
<div className="collapse navbar-collapse" id="navbarText">14.
<ul className="navbar-nav mr-auto text-left">15.
<li className="nav-item active">16.
Home17.

18.
19.

</div>20.
Mathificent21.

</div>22.
</nav>23.

</header>24.
<h1>Mathificent</h1>25.
<footer className="navbar fixed-bottom bg-dark">26.
<div className="container-fluid">27.
28.
Copyright © {new Date().getFullYear()} Webucator29.

30.
</div>31.

</footer>32.
</div>33.
);34.

}35.
36.

export default App;37.

Code Explanation

The preceding code shows the complete App.js file.

24 | LESSON 2: JSX and React Elements

EVALUATION COPY: Not to be used in class.

Solution: React/Solutions/jsx-react-elements/index.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="utf-8" />4.
<link rel="icon" href="%PUBLIC_URL%/favicon.ico" />5.
<link6.
href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"7.
rel="stylesheet"8.

 integrity="sha384-1BmE4kWBq78iYhFldvKuhfTAU6auU8tT94WrHftjDbrCEXSU1oBo ↵↵
qyl2QvZ6jIW3"

9.

crossorigin="anonymous"10.
/>11.
<meta name="viewport" content="width=device-width, initial-scale=1" />12.
<meta name="theme-color" content="#000000" />13.
<meta14.
name="description"15.
content="Web site created using create-react-app"16.

/>17.
<link rel="apple-touch-icon" href="logo192.png" />18.
<link rel="manifest" href="%PUBLIC_URL%/manifest.json" />19.
<title>Mathificent!</title>20.

</head>21.
<body>22.
<noscript>You need to enable JavaScript to run this app.</noscript>23.
<div id="root"></div>24.
<script25.

 src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/js/bootstrap.bun ↵↵
dle.min.js"

26.

 integrity="sha384-ka7Sk0Gln4gmtz2MlQnikT1wXgYsOg+OMhuP+IlRH9sEN ↵↵
BO0LRn5q+8nbTov4+1p"

27.

crossorigin="anonymous"28.
></script>29.
</body>30.
</html>31.

Code Explanation

This is the HTML code that should be in public/index.html. It has the Bootstrap CSS and JavaScript
added. When you run the Mathificent React app (using npm start), the page should now look like
this:

LESSON 2: JSX and React Elements | 25

Remember to stop the app (CTRL+C) and close the terminal when you are done.

Conclusion

In this lesson, you have learned about JSX, which is the template language used to change the DOM.

26 | LESSON 2: JSX and React Elements

EVALUATION COPY: Not to be used in class.

LESSON 3
React Components

Topics Covered

 Best practices for writing React components.

 Passing data between components with props.

Introduction

React components are the building blocks of React user interfaces. In this lesson, you’ll learn how to
put those building blocks together.

❋

3.1. Assembling User Interfaces

Every React application consists of at least one React component, called the root component. Although
it is fully possible to write an entire React application with only one component, doing so would defeat
the purpose of React and make your code difficult to maintain.

 3.1.1. Understanding F.I.R.S.T.

User interface design can be extremely complex. Different screens need to be shown based on where
users are in a website or process, data needs to be sent to and received from a server, every user interaction
can trigger an event, and modern web applications need to run on desktop, tablet, and smart phone
devices. Rather than trying to understand and build an entire web application at once, web developers
are increasingly adopting a technique that’s long been standard practice in the rest of the software
development world: namely, reusable components.

One common way of remembering the best practices for how to design React components is the rule
of F.I.R.S.T. This rule says that React components should be:

Flexible
Independent
Reusable
Small

LESSON 3: React Components | 27

Testable

The benefits of designing components with the rule of F.I.R.S.T. in mind are that your components:

1. will be less likely to have errors.

2. will be easier to work with on a team.

3. will be easier to write.

4. will be easier to maintain.

In general, if you find yourself writing a React component that has more than one purpose, that’s a
good indicator that it is time to break that component into separate smaller components that each only
do one thing.

 3.1.2. Passing Data with Props

Once you’ve written components that comply with the rule of F.I.R.S.T., the next step in making
useful components is to be able to pass data and functionality into them so that the same component
can produce different results when given different data.

The props object is used for passing data into React components. Props are simply JSX attributes that
you specify when you use a component. These attributes can have any valid name. Inside of the
component, these attributes become accessible as properties in the props object.

For example, in the following component, we use several instances of a React component named
HelloMessage. With each use of the HelloMessage component, we pass in a different value for the
helloTo attribute.

28 | LESSON 3: React Components

EVALUATION COPY: Not to be used in class.

Demo 3.1: React/demo-viewer/src/Demos/Greeting.js

import React from 'react';1.
import HelloMessage from './HelloMessage';2.

3.
function Greeting() {4.

return (5.
<div>6.
<HelloMessage helloTo="Greta" />7.
<HelloMessage helloTo="Todd" />8.
<HelloMessage helloTo="Chris" />9.

</div>10.
);11.

}12.
13.

export default Greeting;14.

Inside the HelloMessage component, you can now define a parameter in the function header called
props and use the values passed into the component as properties inside the props object, like this:

Demo 3.2: React/demo-viewer/src/Demos/HelloMessage.js

import React from 'react';1.
2.

function HelloMessage(props) {3.
return (4.
<p>Hello, {props.helloTo}!</p>5.
);6.

}7.
8.

export default HelloMessage;9.

When the Greeting component is rendered in a browser, it will look like this:

LESSON 3: React Components | 29

Note that when you pass variables from a parent to a child component, you wrap the variable in curly
braces instead of quotation marks:

Demo 3.3: React/demo-viewer/src/Demos/Greeting2.js

import React from 'react';1.
import HelloMessage from './HelloMessage';2.

3.
function Greeting2() {4.

const firstName = 'Nat';5.
return (6.
<div>7.
<HelloMessage helloTo="Greta" />8.
<HelloMessage helloTo="Todd" />9.
<HelloMessage helloTo="Chris" />10.
<HelloMessage helloTo={firstName} />11.

</div>12.
);13.

}14.
15.

export default Greeting2;16.

30 | LESSON 3: React Components

EVALUATION COPY: Not to be used in class.

 Exercise 4: Breaking an App into
Components

 45 to 60 minutes

In this exercise, you will break up the user interface of the Mathificent game into subcomponents.

Although it is possible to write an entire React application in a single component, what makes React
useful is that it allows you to break your user interface into components which can be reused. So, let’s
make some components!

1. Create a new file in the mathificent/src directory named Header.js. Note that the name
of this file starts with a capital letter. In React, the names of custom components always start
with a capital letter.

2. Inside this new file, import React and then define a function named Header:

import React from 'react';

function Header() {
return (

)
}

3. After the function definition, export this function so that it becomes a JavaScript module that
can be imported into other JavaScript files:

export default Header;

4. Open App.js in your editor.

5. Cut the full header element (including the <header> and </header> tags) from App.js
and paste it inside the return statement of the function of your new Header component.

6. Back in App.js, add an additional import statement to the beginning of the file to import
the Header component:

import Header from './Header';

LESSON 3: React Components | 31

7. Notice that when we import the Header component, we need to use ./ before the file name
and we don’t include the .js at the end of the file name.

8. Inside the return statement, replace the existing <header> element with your new custom
component, <Header>. To do this, just delete everything from the opening <header> tag to
the closing </header> tag and type in a single self-closing <Header /> tag.

<div className="App">
<Header />
<h1>Mathificent</h1>
<footer> ... </footer>

</div>

9. Next we’ll make the footer into a component. Start by making a new file named Footer.js
in the src directory.

10. Import React, define a function named Footer, and export the function just as you did with
the Header component.

11. Cut the the full footer element (including the <footer> and </footer> tags) from App.js
and paste it inside the return statement of the function of your new Footer component.

12. Import the Footer component into App.js and put the new custom Footer component at
the end of the return statement, before the </div> tag. Your return statement in App.js
should now look like this:

return (
<div className="App">
<Header />
<h1>Mathificent</h1>
<Footer />

</div>
);

13. At this point, your web page should look the same as it did when you started the exercise, but
the code is broken into components, making it easier to maintain.

14. Take a look at the finished Mathificent program and think about how you might split up the
main content of the app into components. Here’s one way it could be done:

32 | LESSON 3: React Components

EVALUATION COPY: Not to be used in class.

15. The first step in the React development process is to create a static (meaning without any
functionality) version of the app. Create a new functional component for each of the unique
components in the following outline that you haven’t already created:

App

Header

Main

SelectInput

PlayButton

Footer

LESSON 3: React Components | 33

16. In the return statement for each component, put a placeholder element containing the name
of the component for now. For example, here’s what the SelectInput component should
look like:

import React from 'react';

function SelectInput() {
return(
<div>SelectInput Component</div>

)
}

export default SelectInput;

17. Now that you have all the components, it is time to put them together in the right order.
Think about the hierarchy of components in your app:

A. App contains Header, Main, and Footer.

B. Main contains two instances of SelectInput and one PlayButton.

18. Import the correct components into App.js and Main.js and then modify the return
statements of these two components to include the correct sub-components (also known as
“child” components). Remember that only one base element can be returned in the return
statement. The Main component should return a main element rather than a div element.
When you’re done, it should look like this in your browser:

34 | LESSON 3: React Components

EVALUATION COPY: Not to be used in class.

19. Replace the placeholder div in the PlayButton component with a button element:

<button>Play!</button>

20. Code the select dropdowns using static options and labels for now. We’ll make them dynamic
shortly:

<div>
<label htmlFor="select">Select Label</label>
<select id="select">
<option value="sample value">Sample Value</option>

</select>
</div>

21. Your application should now look like this:

LESSON 3: React Components | 35

Solution: React/Solutions/components/static/App.js

import React from 'react';1.
import './App.css';2.
import Header from './Header';3.
import Footer from './Footer';4.
import Main from './Main';5.

6.
function App() {7.
return (8.
<div className="App">9.
<Header />10.
<h1>Mathificent</h1>11.
<Main />12.
<Footer />13.

</div>14.
);15.

}16.
17.

export default App;18.

36 | LESSON 3: React Components

EVALUATION COPY: Not to be used in class.

Solution: React/Solutions/components/static/Header.js

import React from 'react';1.
2.

function Header() {3.
return (4.
<header>5.
<nav className="navbar navbar-expand-lg navbar-dark bg-dark">6.
<div className="container-fluid">7.
<button className="navbar-toggler" type="button"8.
data-bs-toggle="collapse" data-bs-target="#navbarText">9.
10.

</button>11.
<div className="collapse navbar-collapse" id="navbarText">12.
<ul className="navbar-nav mr-auto text-left">13.
<li className="nav-item active">14.
Home15.

16.
17.

</div>18.
Mathificent19.

</div>20.
</nav>21.

</header>22.
)23.

}24.
25.

export default Header;26.

LESSON 3: React Components | 37

Solution: React/Solutions/components/static/Footer.js

import React from 'react';1.
2.

function Footer() {3.
return (4.

<footer className="navbar fixed-bottom bg-dark">5.
<div className="container-fluid">6.
7.
Copyright © {new Date().getFullYear()} Webucator8.

9.
</div>10.

</footer>11.
)12.

}13.
14.

export default Footer;15.

Solution: React/Solutions/components/static/Main.js

import React from 'react';1.
import SelectInput from './SelectInput';2.
import PlayButton from './PlayButton';3.

4.
function Main() {5.
return(6.
<main>7.
<SelectInput />8.
<SelectInput />9.
<PlayButton />10.

</main>11.
)12.

}13.
14.

export default Main;15.

38 | LESSON 3: React Components

EVALUATION COPY: Not to be used in class.

Solution: React/Solutions/components/static/SelectInput.js

import React from 'react';1.
2.

function SelectInput() {3.
return(4.
<div>5.
<label htmlFor="select">Select Label</label>6.
<select id="select">7.
<option value="sample value">Sample Value</option>8.

</select>9.
</div>10.

)11.
}12.

13.
export default SelectInput;14.

Solution: React/Solutions/components/static/PlayButton.js

import React from 'react';1.
2.

function PlayButton() {3.
return(4.
<button>Play!</button>5.

)6.
}7.

8.
export default PlayButton;9.

LESSON 3: React Components | 39

 Exercise 5: Passing Props Between
Components

 20 to 30 minutes

In this exercise, you will learn how to pass data from parent components to child components and then
how to use that data in the child components.

1. Open Main.js in your editor.

2. Inside the function, but before the return statement, create an array to hold the possible
operations.

const operations = ['+', '-', 'x', '/'];

3. Create an empty array inside the Main component that will hold the list of numbers that we’ll
use to populate the maximum number dropdown:

const numbers = [];

4. Use a for loop to create an array of the numbers from 2 to 100:

for (let number=2; number <= 100; number++) {
numbers.push(number);

}

5. Modify your two SelectInput elements to pass the select dropdown values, labels, and ids
to the child components:

<SelectInput label="Operation" id="operation"
values={operations} />

<SelectInput label="Maximum Number" id="max-number"
values={numbers} />

6. Open SelectInput.js in your editor.

40 | LESSON 3: React Components

EVALUATION COPY: Not to be used in class.

7. Pass props into SelectInput as a parameter:

function SelectInput(props) {

}

8. Outside of the return statement in SelectInput, use the Array.map() method to generate
a list of option elements. This same statement will be used by both of our dropdown boxes,
as well as any future ones that we might add:

const values = props.values;
const selectOptions = values.map((value)=>
<option value={value} key={value.toString()}>{value}</option>

);

9. Replace the hard-coded id and label with the prop values:

<label htmlFor={props.id}>{props.label}</label>

10. Change the id of the select to the id passed from the parent:

<select id={props.id}>

11. Replace the hard-coded option element with the array of option elements created by the
Array.map() method:

<select id={props.id}>
{selectOptions}

</select>

LESSON 3: React Components | 41

12. Run the app. It should look like this:

42 | LESSON 3: React Components

EVALUATION COPY: Not to be used in class.

LESSON 3: React Components | 43

Solution: React/Solutions/components/static-with-props/Main.js

import React from 'react';1.
import SelectInput from './SelectInput';2.
import PlayButton from './PlayButton';3.

4.
function Main() {5.
const operations = ['+', '-', 'x', '/'];6.
const numbers = [];7.
for (let number = 2; number <= 100; number++) {8.
numbers.push(number);9.

}10.
return(11.
<main>12.
<SelectInput label="Operation" id="operation"13.
values={operations} />14.

<SelectInput label="Maximum Number" id="max-number"15.
values={numbers} />16.

<PlayButton />17.
</main>18.

)19.
}20.

21.
export default Main;22.

44 | LESSON 3: React Components

EVALUATION COPY: Not to be used in class.

Solution: React/Solutions/components/static-with-props/SelectInput.js

import React from 'react';1.
2.

function SelectInput(props) {3.
const values = props.values;4.
const selectOptions = values.map((value)=>5.
<option value={value} key={value.toString()}>{value}</option>6.

);7.
8.

return(9.
<div>10.
<label htmlFor={props.id}>{props.label}</label>11.
<select id={props.id}>12.
{selectOptions}13.

</select>14.
</div>15.

)16.
}17.

18.
export default SelectInput;19.

LESSON 3: React Components | 45

 Exercise 6: Organizing Your Components
 15 to 25 minutes

As your app starts to get more complex, it can be helpful to organize it into subdirectories, rather than
having everything in the same location as we have now.

In this exercise, you will learn how to create a more organized folder and file structure for your
applications and put your components into subfolders.

1. Create a new directory inside src and name it components.

2. In your editor, drag the following files into the new components directory:

A. Footer.js

B. Header.js

C. Main.js

D. PlayButton.js

E. SelectInput.js

3. Create another directory inside src and name it containers. Containers are components
whose purpose is to hold other components, manage state, and pass data to presentational
components.

4. In your editor, drag the following files into the new containers directory:

App.js

App.css

App.test.js

5. Open App.js in your editor and update the import statements to correctly import the
subcomponents, like this:

import Header from '../components/Header';
import Footer from '../components/Footer';
import Main from '../components/Main';

6. Open index.js in your editor and update the path to App.js in the import:

import App from './containers/App';

46 | LESSON 3: React Components

EVALUATION COPY: Not to be used in class.

7. Delete the logo.svg file. You won’t be using that anymore.

8. If it is not already running, start up your development server by running npm start in your
terminal. It should look the same as it did before. If you get a “Module not found” error, then
you need to check your import statements.

LESSON 3: React Components | 47

Solution

Your file structure should now look like this:

❋

3.2. Semantic HTML and the Fragment Element

Each React component can only return a single element. Sometimes that means you have to surround
React elements with a container element to prevent an error. For example, the following return
statement in a React component will produce an error because it’s attempting to return more than one
element:

return (
<p>this is the first thing</p>
<p>this is another thing</p>

);

One common way to fix this problem is by surrounding the required elements with a div element so
that only one element, which may contain other elements, is returned:

48 | LESSON 3: React Components

EVALUATION COPY: Not to be used in class.

return (
<div>
<p>this is the first thing</p>
<p>this is another thing</p>

</div>
);

Although this solution does make the React component work, it adds a layer of meaningless
“non-semantic” markup to the document. React includes a Fragment element for creating valid React
components without generating unnecessary layers of meaningless HTML.

Fragment creates a container around JSX elements without producing any HTML output. To use
Fragment in a component, you first need to import it, like this:

import React, {Fragment} from 'react';

Once imported, you can use it in your return statement like you do any other element. For example:

return (
<Fragment>
<p>this is the first thing</p>
<p>this is another thing</p>

</Fragment>
)

The output of the this return statement will only include the two paragraphs.

React also includes a shorthand way of writing the Fragment element, which emphasizes that it doesn’t
return anything and is also faster to type: <></>. Here’s the preceding example written using the
shorthand Fragment element syntax:

return (
<>
<p>this is the first thing</p>
<p>this is another thing</p>

</>
);

LESSON 3: React Components | 49

One thing to be aware of with the shorthand Fragment syntax is that certain editors may incorrectly
report it as an error.

In this course, we will write out the word “Fragment” as we find it clearer.

50 | LESSON 3: React Components

EVALUATION COPY: Not to be used in class.

 Exercise 7: Using Fragment
 5 to 10 minutes

Examine all your components in the components folder. One of them is returning a div element that
has no semantic value. Replace that div element with a Fragment element. Don’t forget to import
Fragment.

LESSON 3: React Components | 51

Solution: React/Solutions/components/fragment/SelectInput.js

import React, {Fragment} from 'react';1.
2.

function SelectInput(props) {3.
const values = props.values;4.
const selectOptions = values.map((value)=>5.
<option value={value} key={value.toString()}>{value}</option>6.

);7.
8.

return(9.
<Fragment>10.
<label htmlFor={props.id}>{props.label}</label>11.
<select id={props.id}>12.
{selectOptions}13.

</select>
14.
</Fragment>15.

)16.
}17.

18.
export default SelectInput;19.

Code Explanation

Note that we did add a
 tag after the select element, so that it continues to appear on its own
line. We will remove that later in favor of CSS.

❋

3.3. Destructuring props

Take another look at the solution to the Exercise 5:

52 | LESSON 3: React Components

EVALUATION COPY: Not to be used in class.

Demo 3.4: React/Solutions/components/fragment/SelectInput.js

import React, {Fragment} from 'react';1.
2.

function SelectInput(props) {3.
const values = props.values;4.
const selectOptions = values.map((value)=>5.
<option value={value} key={value.toString()}>{value}</option>6.

);7.
8.

return(9.
<Fragment>10.
<label htmlFor={props.id}>{props.label}</label>11.
<select id={props.id}>12.
{selectOptions}13.

</select>
14.
</Fragment>15.

)16.
}17.

18.
export default SelectInput;19.

Notice how we create a constant values and set it to props.values. We do that to make the next
line a little easier to write. This is an especially common practice when you need to reuse a props
property multiple times. Also, notice how we reference props properties several times in the file. It’d
be nice to be able to refer to the property directly instead of having to type props over and over. We
can do this by destructuring props in the function parameter, like this:

function SelectInput({label, id, values}) {...

See how that saves us from having to type props repeatedly:

LESSON 3: React Components | 53

Demo 3.5: React/Solutions/components/props-broken-out/SelectInput.js

import React, {Fragment} from 'react';1.
2.

function SelectInput({label, id, values}) {3.
const selectOptions = values.map((value)=>4.
<option value={value} key={value.toString()}>{value}</option>5.

);6.
7.

return(8.
<Fragment>9.
<label htmlFor={id}>{label}</label>10.
<select id={id}>11.
{selectOptions}12.

</select>
13.
</Fragment>14.

)15.
}16.

17.
export default SelectInput;18.

Conclusion

In this lesson, you have learned how to make more robust and flexible components through the rule
of F.I.R.S.T. You also learned how to pass data between components using props, to organize your
components, and to use the Fragment element.

54 | LESSON 3: React Components

EVALUATION COPY: Not to be used in class.

LESSON 4
React State

Topics Covered

 “State” in React.

 Stateful variables.

 Updating state.

Introduction

The state of a React component is the internal data of that component that determines how it should
change. In this lesson, you’ll learn how to use state to add interactivity to your components.

❋

4.1. Understanding State

State is the internal data of a component that keeps track of how it changes over time. At its most basic
level, state is just an object within a component. To understand state, it’s helpful to look at a few
examples, starting first with a component that does not modify state:

LESSON 4: React State | 55

Demo 4.1: React/demo-viewer/src/Demos/ChangeCount1.js

import React from 'react';1.
2.

function ChangeCount1() {3.
4.

let count = 0;5.
6.

function increment(e) {7.
count++;8.
console.log(`Count is ${count}.`);9.
// e.target.innerHTML = count;10.

}11.
12.

return (13.
<div className="container">14.
<button className="btn btn-primary"15.
onClick={increment}>{count}</button>16.

</div>17.
);18.

}19.
20.

export default ChangeCount1;21.

Code Explanation

Things to notice:

1. The count variable is initialized to 0:

let count = 0;

2. The button shows the value of count:

<button className="btn btn-primary"
onClick={increment}>{count}</button>

3. When the user clicks the button, the callback function increment() is called. Remember
that, in JavaScript, an event’s callback function is passed the event itself.

4. The increment() function currently does two things:

A. Increments the value of count by 1.

B. Logs the value of count to the console.

56 | LESSON 4: React State

EVALUATION COPY: Not to be used in class.

5. To run this demo, open React/demo-viewer in the terminal by right-clicking the folder
and selecting Open in Integrated Terminal:

6. Run npm start to launch the demo-viewer React application.

7. Click the ChangeCount1 link under React State. You should see a page with a button with
the number 0 on it. Remember, this button is showing the value of count.

8. With Google Chrome’s console open, click the button several times. You should see something
like this:

You can see from the output in the console that the value of count is being incremented, but
the value on the button does not change. In other words, the page is not reacting to the change
in count.

LESSON 4: React State | 57

9. Open demo-viewer/src/Demos/ChangeCount1.js in your editor and uncomment the
following line:

e.target.innerHTML = count;

Here we explicitly update the DOM to reflect the change in the value of count. Return to
the browser and click the button. The button now updates as the value of count changes.

❋

4.2. Getting React to React

In the demo we just saw, we had to explicitly update the DOM to get it in sync with the value of the
count variable. That’s because React will only re-render when there is a change in state. Updating a
local variable does not cause a change in state. Instead, we have to tell our component to create the
variable using state. You do that like this:

const [count, setCount] = useState(0);

The useState() function will return two things:

1. An initial value.

2. A function for changing that value.

Using array destructuring, we assign these two values to constants. Although you can name those
constants whatever you like, traditionally, the function name begins with set followed by the name
of the the first constant. For example, if the first constant is named foo, the second constant would
be named setFoo:

const [foo, setFoo] = useState('bar');

Let’s see how it works:

58 | LESSON 4: React State

EVALUATION COPY: Not to be used in class.

Demo 4.2: React/demo-viewer/src/Demos/ChangeCount2.js

import React, {useState} from 'react';1.
2.

function ChangeCount2() {3.
4.

const [count, setCount] = useState(0);5.
6.

function increment() {7.
setCount(count + 1);8.
console.log(`Button clicked. Count is ${count}.`);9.

}10.
11.

return (12.
<div className="container">13.
<button className="btn btn-primary"14.
onClick={increment}>{count}</button>15.

</div>16.
);17.

}18.
19.

export default ChangeCount2;20.

Code Explanation

Things to notice:

1. We have to import useState into our component. When you import a single function from
a file containing multiple functions, you use curly braces around the name of the function.
Here’s what the new React import should look like:

import React, {useState} from 'react';

2. We then create the count variable using:

const [count, setCount] = useState(0);

And we update it using:

setCount(count + 1);

3. Note that we do not explicitly change the innerHTML of the button.

LESSON 4: React State | 59

4. In your browser, clear the console and then return to the demo-viewer home page and click
the ChangeCount2 link under React State. With Google Chrome’s console open, click the
button several times. The button value should be updating on each click. The page now reacts
to the change in the value of count.

5. Notice the logged value of count vs. the value that shows up on the button. The logged value
is always the value before the click:

To understand why that is, understand that your state variables live in their own space. When
any state value changes, the component re-renders, but only after the current process is
complete. So in this case, we have the following sequence of events:

A. The component is rendered and the value of count is set.

B. The user clicks the button resulting in a call to increment().

C. The value of the state variable count is changed using setCount().

D. The value of count at the time of the last rendering is logged to the console. That
last rendering took place before the user clicked the button.

E. The component is re-rendered because of a change in state caused by the change in
the value of the state variable count. This re-rendering causes the DOM to be
updated based on any state changes.

60 | LESSON 4: React State

EVALUATION COPY: Not to be used in class.

The important takeaway here is that the callback function finishes executing before the
re-rendering occurs.

❋

4.3. Why is count a Constant?

It seems strange that count is a constant when its value is changing. Understanding why is helpful in
understanding state. The value of the count is unchanged on each rendering of the component. Each
time the component is rendered, the value of the constant count is set to the corresponding value of
the state variable count. That state variable count is indeed variable. It can be changed using
setCount(). Doing so will trigger a re-rendering of the component, meaning the component code is
executed again, and a new constant count is created using the updated value of the state variable count.

To see this flow of events:

1. With the ChangeCount2 example still open in your browser, clear the console.

2. Open demo-viewer/src/Demos/ChangeCount2.js in your editor and add the following
line immediate after first setting count:

const [count, setCount] = useState(0);
console.log(`Rendering. Count is : ${count}.`);

3. Return to the browser. Notice that the following was logged to the console:

Rendering. Count is : 0.

4. Click the button twice. The following will be logged to the console:

Button clicked. Count is 0.
Rendering. Count is : 1.
Button clicked. Count is 1.
Rendering. Count is : 2.

LESSON 4: React State | 61

Notice that the output resulting from the button click occurs before the output from the
re-rendering. The new value of the constant count is only set after the component is
re-rendered.

❋

4.4. Child Components and State

When a component’s state is changed, that component is re-rendered, which causes all of its child
components to also be re-rendered. This gives the child components the opportunity to update the
DOM as well. Let’s take a look at a more complete application. First, we’ll look at the application in
the browser:

Go back to the demo-viewer home page and click the Quiz link under under React State. You should
see a page like this one:

Play around a bit with the quiz and then, before reading on, spend some time exploring the code used
to create this application. See if you can figure out how everything works.

We’ll start by looking at the data:

62 | LESSON 4: React State

EVALUATION COPY: Not to be used in class.

Demo 4.3: React/demo-viewer/src/Demos/quiz/presidents-quiz.js

const quiz = {1.
"title": "Presidents Quiz",2.
"questions" : [3.
{4.
"question": "What number president was George Washington?",5.
"answers": [1, 2, 3, 4],6.
"correct": 17.

},8.
{9.
"question": "What number president was Thomas Jefferson?",10.
"answers": [2, 3, 4, 5],11.
"correct": 312.

},13.
{14.
"question": "What number president was Abraham Lincoln?",15.
"answers": [14, 15, 16, 17],16.
"correct": 1617.

},18.
{19.
"question": "What number president was John F. Kennedy?",20.
"answers": [33, 34, 35, 36],21.
"correct": 3522.

},23.
-------Lines 24 through 28 Omitted-------
]29.

};30.
31.

export default quiz;32.

Code Explanation

This is simply a JavaScript file that exports a JavaScript object with two properties:

1. title - The title of the quiz.

2. questions - A list of question objects, each of which contains:

A. question - A question.

B. answers - A list of possible answers.

C. correct - The correct answer.

LESSON 4: React State | 63

Now let’s look at the main application file:

64 | LESSON 4: React State

EVALUATION COPY: Not to be used in class.

Demo 4.4: React/demo-viewer/src/Demos/quiz/Quiz.js

import React, {useState} from 'react';1.
import Question from './Question';2.
import Answer from './Answer';3.
import Message from './Message';4.
import Scoreboard from './Scoreboard';5.
import quiz from './presidents-quiz';6.

7.
function Quiz() {8.

9.
const [qNum, setQNum] = useState(0);10.
const [totalAttempts, setTotalAttempts] = useState(0);11.
const [correctResponses, setCorrectResponses] = useState(0);12.
const [message, setMessage] = useState('');13.

14.
const quizTitle = quiz.title;15.

16.
// All of these will be updated when qNum changes17.
const question = quiz.questions[qNum];18.
const questionText = question['question'];19.
const correctAnswer = question['correct'];20.
const answers = question['answers'].map((answer) =>21.
<Answer answer={answer} key={answer} checkAnswer={checkAnswer} />22.

);23.
24.

function checkAnswer(answer) {25.
setTotalAttempts(totalAttempts + 1);26.
if (answer === correctAnswer) {27.
setCorrectResponses(correctResponses + 1);28.
nextQuestion();29.

} else {30.
setMessage('Wrong!');31.

}32.
}33.

34.
function nextQuestion() {35.
const nextQNum = qNum + 1;36.
setMessage('');37.
if (nextQNum === quiz.questions.length) {38.
setQNum(0); // Go back to first question39.

} else {40.
setQNum(nextQNum);41.

}42.
}43.

44.

LESSON 4: React State | 65

return (45.
<div className="container">46.
<h1>{quizTitle}</h1>47.
<Scoreboard totalAttempts={totalAttempts}48.
correctResponses={correctResponses} />49.

<Question question={questionText} />50.
{answers}51.
<Message msg={message} />52.

</div>53.
);54.

}55.
56.

export default Quiz;57.

Code Explanation

1. This file imports the quiz data and four child components:

A. Question

B. Answer

C. Message

D. Scoreboard

2. At the start of the Quiz() function, we set state variables and the functions for changing
them:

A. qNum - the current question number.

B. totalAttempts - the number of attempts.

C. correctResponses - the number of correct responses.

D. message - the message to output when the user attempts to answer a question.

3. We then set quizTitle to the title property of the imported quiz object.

4. Next, we set question based on the current value of qNum. That will give us an object like
this:

{
"question": "What number president was George Washingon?",
"answers": [1, 2, 3, 4],
"correct": 1

}

66 | LESSON 4: React State

EVALUATION COPY: Not to be used in class.

And we use the properties of that object to set questionText, correctAnswer, and answers,
which will be an array of <Answer> tags to include in our return statement. Let’s take a look
at the Answer component:

Demo 4.5: React/demo-viewer/src/Demos/quiz/Answer.js

import React from 'react';1.
2.

function Answer(props) {3.
4.

return (5.
<button className="btn btn-primary m-3"6.
onClick={() => {7.
props.checkAnswer(props.answer);8.

}}>{props.answer}</button>9.
);10.

}11.
12.

export default Answer;13.

Code Explanation

This returns a button that shows the value of the passed-in answer. Notice that the onClick handler’s
callback function is:

() => {
props.checkAnswer(props.answer);

}

props.checkAnswer holds the function passed in via the checkAnswer attribute in the component
tag:

<Answer answer={answer} key={answer} checkAnswer={checkAnswer} />

The checkAnswer() function looks like this:

LESSON 4: React State | 67

function checkAnswer(answer) {
setTotalAttempts(totalAttempts + 1);
if (answer === correctAnswer) {
setCorrectResponses(correctResponses + 1);
nextQuestion();

} else {
setMessage('Wrong!');

}
}

Whether or not the answer is correct, it will increment totalAttempts by one, which will result in a
re-rendering of the child Scoreboard component. It then checks the user’s answer and responds
accordingly:

1. If the answer is correct, it will increment correctResponses by one and call
nextQuestion(), which will clear the message and update qNum, resulting in a re-rendering
of the child Question component, all Answer components, and the Message component.

2. If the answer is incorrect, it will set the message to “Wrong!”, resulting in a re-rendering of
the child Message component.

Review the Question, Message, and Scoreboard components as well. You should be able to understand
how they work:

Demo 4.6: React/demo-viewer/src/Demos/quiz/Question.js

import React from 'react';1.
2.

function Question(props) {3.
4.

return (5.
<h2>{props.question}</h2>6.

);7.
}8.

9.
export default Question;10.

68 | LESSON 4: React State

EVALUATION COPY: Not to be used in class.

Demo 4.7: React/demo-viewer/src/Demos/quiz/Message.js

import React from 'react';1.
2.

function Message(props) {3.
4.

return (5.
<strong className="text-danger">{props.msg}6.

);7.
}8.

9.
export default Message;10.

Demo 4.8: React/demo-viewer/src/Demos/quiz/Scoreboard.js

import React from 'react';1.
2.

function Scoreboard(props) {3.
4.

function getGrade() {5.
if (props.totalAttempts === 0) {6.
return 0;7.

}8.
const grade = (props.correctResponses / props.totalAttempts) * 100;9.
return Math.round(grade);10.

}11.
12.

return (13.
<div>14.
Total Attempts: 15.
{props.totalAttempts}
16.

17.
Correct Responses: 18.
{props.correctResponses}
19.

20.
Grade: 21.
{getGrade()}%22.

</div>23.
);24.

}25.
26.

export default Scoreboard;27.

Now that you have an understanding of how state works to keep React apps reactive, let’s use state in
our Mathificent game.

LESSON 4: React State | 69

 Exercise 8: Adding State
 15 to 25 minutes

In this exercise we’ll add state to the Mathificent application. On the initial screen, the user selects the
operation and the maximum number using dropdowns. The application needs to keep track of those
selections to generate the questions used in the game. We’ll use state variables to set and update those
values.

1. Inside App.js, modify the first import statement to also import useState from ‘react’:

import React, {useState} from 'react';

2. Inside the function definition for the App component, create a new state variable called
operation and a setOperation function for modifying that variable. Set the default value
to 'x':

const [operation, setOperation] = useState('x');

3. Next, use the same technique to create a state variable named maxNumber and a function
called setMaxNumber. Set the default value to the number 10:

const [maxNumber, setMaxNumber] = useState(10);

4. Inside the return statement in App.js, pass all of the state variables and functions to the
Main component:

<Main operation={operation}
setOperation={setOperation}
maxNumber={maxNumber}
setMaxNumber={setMaxNumber} />

5. Create, import, and display a new Game component:

70 | LESSON 4: React State

EVALUATION COPY: Not to be used in class.

In the components directory, create a new Game component that for now just outputs
the operation and maxNumber state variables, which we will pass in via props:

import React from 'react';

function Game(props) {
return (
<div>
Operation is {props.operation}.
Maximum number is {props.maxNumber}.

</div>
)

}

export default Game;

A.

B. Back in App.js, import the new Game component:

import Game from '../components/Game';

And below the Main element, add a Game element, passing in operation and
maxNumber:

<Game operation={operation}
maxNumber={maxNumber} />

C. Note that eventually, the App component will use routing to either display the Main
component or the Game component, but as we haven’t learned how to do routing
yet, it is currently displaying both together.

6. Update the Main function component to receive props as a parameter.

function Main(props) {

LESSON 4: React State | 71

7. Pass the correct props variables and functions to the SelectInput components:

<SelectInput label="Operation"
id="operation"
currentValue={props.operation}
setCurrentValue={props.setOperation}
values={operations} />

<SelectInput label="Maximum Number"
id="max-number"
currentValue={props.maxNumber}
setCurrentValue={props.setMaxNumber}
values={numbers} />

8. Inside the SelectInput component, add currentValue and setCurrentValue to the
deconstructed props parameter:

function SelectInput({label, id, values,
currentValue, setCurrentValue}) {…

Then set defaultValue of the select control and use an onChange handler to update the
state when a the user selects a different dropdown item.

<select id={id}
defaultValue={currentValue}
onChange={(e) => setCurrentValue(e.target.value)}>
{selectOptions}

</select>

The defaultValue attribute of form controls is a special React attribute that is used to set
the value when the form control loads.

9. If it is not already running, start up your development server by running npm start in your
terminal. Change the operation to “+” and the maximum number to 15. You should see the
following:

72 | LESSON 4: React State

EVALUATION COPY: Not to be used in class.

LESSON 4: React State | 73

Solution: React/Solutions/state/App.js

import React, {useState} from 'react';1.
import './App.css';2.

3.
import Header from '../components/Header';4.
import Footer from '../components/Footer';5.
import Main from '../components/Main';6.
import Game from '../components/Game';7.

8.
function App() {9.
const [operation, setOperation] = useState('x');10.
const [maxNumber, setMaxNumber] = useState(10);11.
return (12.
<div className="App">13.
<Header />14.
<h1>Mathificent</h1>15.
<Main operation={operation}16.

setOperation={setOperation}17.
maxNumber={maxNumber}18.
setMaxNumber={setMaxNumber} />19.

<Game operation={operation}20.
maxNumber={maxNumber} />21.

<Footer />22.
</div>23.
);24.

}25.
26.

export default App;27.

Solution: React/Solutions/state/Game.js

import React from 'react';1.
2.

function Game(props) {3.
return (4.
<div>5.
Operation is {props.operation}.6.
Maximum number is {props.maxNumber}.7.

</div>8.
)9.

}10.
11.

export default Game;12.

74 | LESSON 4: React State

EVALUATION COPY: Not to be used in class.

Solution: React/Solutions/state/Main.js

import React from 'react';1.
import SelectInput from './SelectInput';2.
import PlayButton from './PlayButton';3.

4.
function Main(props) {5.
const operations = ['+', '-', 'x', '/'];6.
const numbers = [];7.
for (let number = 2; number <= 100; number++) {8.
numbers.push(number);9.

}10.
return(11.
<main>12.
<SelectInput label="Operation"13.
id="operation"14.
currentValue={props.operation}15.
setCurrentValue={props.setOperation}16.
values={operations} />17.

<SelectInput label="Maximum Number"18.
id="max-number"19.
currentValue={props.maxNumber}20.
setCurrentValue={props.setMaxNumber}21.
values={numbers} />22.

<PlayButton />23.
</main>24.

)25.
}26.

27.
export default Main;28.

LESSON 4: React State | 75

Solution: React/Solutions/state/SelectInput.js

import React, {Fragment} from 'react';1.
2.

function SelectInput({label, id, values,3.
currentValue, setCurrentValue}) {4.

const selectOptions = values.map((value)=>5.
<option value={value} key={value.toString()}>{value}</option>6.

);7.
8.

return(9.
<Fragment>10.
<label htmlFor={id}>{label}</label>11.
<select id={id}12.
defaultValue={currentValue}13.
onChange={(e) => setCurrentValue(e.target.value)}>14.
{selectOptions}15.

</select>
16.
</Fragment>17.

)18.
}19.

20.
export default SelectInput;21.

Conclusion

In this lesson, you have learned how to manage state using useState and to pass state variables between
components.

76 | LESSON 4: React State

EVALUATION COPY: Not to be used in class.

LESSON 5
React Routing

Topics Covered

 Routing in a React application.

Introduction

Routing refers to the ability to change what displays in the browser based on the current value of the
browser location property.

❋

5.1. Routing

The location property of the browser is how the browser tracks the current web page being viewed.
However, with JavaScript “single page” applications, the actual web page downloaded to the browser
is always the same (index.html in our case), so we can use the location property to determine which
components are mounted at any one time, without needing to download another file from the server.

First, let’s take a look at how standard web pages work:

1. Visit https://www.wikipedia.org/ in Google Chrome.

2. Open Google Chrome’s Network tab and then clear it by pressing the Clear icon:

LESSON 5: React Routing | 77

https://www.wikipedia.org/

3. With the Network tab open, click any link on the page. You will see the Network tab fill up
with downloaded assets:

4. Now open React/demo-viewer in VS Code’s terminal by right-clicking the folder and
selecting Open in Integrated Terminal:

78 | LESSON 5: React Routing

EVALUATION COPY: Not to be used in class.

5. Run npm start to launch the demo-viewer React application.

6. Open and clear Google Chrome’s Network tab.

7. Click around. Notice that the URL changes and the page display changes, but nothing gets
downloaded. This is because each link click does not result in a fresh fetch of a web page from
the web server. Instead, it results in a new router to a different component, which then updates
the DOM.

In the next exercise, we will see how this is done.

LESSON 5: React Routing | 79

 Exercise 9: Implementing Routes
 15 to 25 minutes

In this exercise, we’ll add routing to the Mathificent app.

1. Open Exercises/mathficent in the terminal.

2. Install React Router by running the following command:

npm install react-router-dom@latest

3. Use the following import statement to import the Routes and Route components from
React Router into App.js:

import {Routes,Route} from 'react-router-dom';

4. Open index.js and import BrowserRouter into it:

import {BrowserRouter} from 'react-router-dom';

5. Inside the root.render method in index.js, wrap the App component with BrowserRouter
tags:

root.render(<BrowserRouter><App /></BrowserRouter>);

6. In App.js, we currently display both Main and Game:

<Main operation={operation} setOperation={setOperation} maxNumber={maxNumber}
setMaxNumber={setMaxNumber} />
<Game operation={operation} maxNumber={maxNumber} />

Replace that code with a Routes component containing two Route components:

<Routes> <Route exact path="/" element={<Main />} /> <Route path="/play" ele ↵↵
ment={<Game>}
/> </Routes>

80 | LESSON 5: React Routing

EVALUATION COPY: Not to be used in class.

7. Start up your development server in Exercises/mathificent if it is not running already.
You should see the same view as before, with the Mathificent header and the two dropdowns,
but without the Game component.

8. Manually change the URL in the browser address bar to http://localhost:3000/play.
The Game component will render where the Main component was, as shown here:

Notice that the values for props.operation and props.maxNumber do not show up. We’ll
fix that soon.

9. Use your browser’s Back button to return to the home page route.

10. Try to change the selected option in one of the dropdown menus. You’ll get an error as shown
here:

LESSON 5: React Routing | 81

The reason for this error is that we’re no longer passing the state data into the Main component.
Let’s fix these issues.

11. Add the props for the main element to the element attribute in the Main route:

<Route exact path="/" element={<Main operation={operation}
setOperation={setOperation} maxNumber={maxNumber} setMaxNumber={setMaxNumber} />}

/>

The exact keyword ensures that the component will not show up on subpaths (e.g.,
http://localhost:3000/foo).

12. Return to your browser and you should be able to change the currently selected option and
see the changes working correctly.

13. The next thing we need to do is to make the Play button change the route to the game. Open
PlayButton.js and import Link from react-router-dom:

import {Link} from 'react-router-dom';

14. Change the Button element to a Link element and add a to attribute. The to attribute
indicates what the location property should be set to when the Link element is clicked. So,

82 | LESSON 5: React Routing

EVALUATION COPY: Not to be used in class.

http://localhost:3000/foo

set the value of the to attribute to /play. We’ll also add some Bootstrap classes to make it
look like a button:

<Link className="btn btn-primary" to="/play">Play!</Link>

15. In your browser, click the button. The currently-displayed component should change from
Main to Game.

16. Update the route for Game in the App component so that it passes operation and maxNumber
as props:

<Route exact path="/play" element={<Game operation={operation}
maxNumber={maxNumber} />} />

17. Finally, move the h1 element from App.js to Main.js. Place it right below the open <main>
tag:

<main> <h1>Mathificent</h1>…

Congratulations! You now have routing set up, and we’re ready to implement the actual logic of the
game.

LESSON 5: React Routing | 83

Solution: React/Solutions/routing/index.js

import React from 'react';1.
import ReactDOM from 'react-dom/client';2.
import {BrowserRouter} from 'react-router-dom';3.
import './index.css';4.
import App from './containers/App';5.
import * as serviceWorker from './serviceWorker';6.

7.
const root = ReactDOM.createRoot(document.getElementById('root'));8.

9.
root.render(<BrowserRouter><App /></BrowserRouter>);10.

11.
// If you want your app to work offline and load faster, you can change12.
// unregister() to register() below. Note this comes with some pitfalls.13.
// Learn more about service workers: https://bit.ly/CRA-PWA14.
serviceWorker.unregister();15.

84 | LESSON 5: React Routing

EVALUATION COPY: Not to be used in class.

Solution: React/Solutions/routing/App.js

import React, {useState} from 'react';1.
import {Routes,Route} from 'react-router-dom';2.
import './App.css';3.
import Header from '../components/Header';4.
import Footer from '../components/Footer';5.
import Main from '../components/Main';6.
import Game from '../components/Game';7.

8.
function App() {9.
const [operation, setOperation] = useState('+');10.
const [maxNumber, setMaxNumber] = useState(10);11.
return (12.
<div className="App">13.
<Header />14.
<Routes>15.
<Route exact path="/"16.
element={17.

<Main operation={operation}18.
setOperation={setOperation}19.
maxNumber={maxNumber}20.
setMaxNumber={setMaxNumber} />} />21.

<Route path="/play"22.
element={23.

<Game operation={operation}24.
maxNumber={maxNumber} />} />25.

</Routes>26.
<Footer />27.

</div>28.
);29.

}30.
31.

export default App;32.

LESSON 5: React Routing | 85

Solution: React/Solutions/routing/Main.js

-------Lines 1 through 10 Omitted-------
return(11.
<main>12.
<h1>Mathificent</h1>13.
<SelectInput label="Operation"14.
id="operation"15.
currentValue={props.operation}16.
setCurrentValue={props.setOperation}17.
values={operations} />18.

<SelectInput label="Maximum Number"19.
id="max-number"20.
currentValue={props.maxNumber}21.
setCurrentValue={props.setMaxNumber}22.
values={numbers} />23.

<PlayButton />24.
</main>25.

)26.
-------Lines 27 through 29 Omitted-------

Solution: React/Solutions/routing/PlayButton.js

import React from 'react';1.
import {Link} from 'react-router-dom';2.

3.
function PlayButton() {4.
return(5.
<Link className="btn btn-primary" to="/play">Play!</Link>6.

)7.
}8.

9.
export default PlayButton;10.

Conclusion

In this lesson, you have learned about routing and how React router makes it possible to change the
component being displayed based on the browser’s location property.

86 | LESSON 5: React Routing

EVALUATION COPY: Not to be used in class.

LESSON 6
Styling React Apps

Topics Covered

 Styling React components and applications.

Introduction

Our current application isn’t all that pretty. Let’s start working on that.

❋

6.1. Plain-old CSS

The first thing to know is that, at the end of the day, we’re styling HTML with CSS, just like you
would with any other website. Early on in the course, we added Bootstrap’s CSS to our public/in
dex.html file, and we used some Bootstrap classes to style our header and footer:

LESSON 6: Styling React Apps | 87

Demo 6.1: Header.js

import React from 'react';1.
2.

function Header() {3.
return (4.
<header>5.
<nav className="navbar navbar-expand-lg navbar-dark bg-dark">6.

<div className="container-fluid">7.
<button className="navbar-toggler" type="button"8.
data-bs-toggle="collapse" data-bs-target="#navbarText">9.
10.

</button>11.
<div className="collapse navbar-collapse" id="navbarText">12.

<ul className="navbar-nav mr-auto text-left">13.
<li className="nav-item active">14.

Home15.
16.

17.
</div>18.

Mathificent19.
</div>20.

</nav>21.
</header>22.

)23.
}24.

25.
export default Header;26.

88 | LESSON 6: Styling React Apps

EVALUATION COPY: Not to be used in class.

Demo 6.2: Footer.js

import React from 'react';1.
2.

function Footer() {3.
return (4.
<footer className="navbar fixed-bottom bg-dark">5.
<div className="container-fluid">6.
7.
Copyright © {new Date().getFullYear()} Webucator8.

9.
</div>10.

</footer>11.
)12.

}13.
14.

export default Footer;15.

className Replaces class

Remember that we must use the attribute className in place of class, because class is a
reserved keyword in JavaScript.

You could replace the Bootstrap CSS with any CSS framework or file(s) that you like. Likewise, you
could add additional CSS files to the index.html page. These styles will be available to all components
in your React application.

6.1. Importing CSS Modules to Components

When we first created our React app with Create React App, an App.css file was included and the
original App.js file imported it:

import './App.css';

We have left that import in place, which is fine, but we should clean up the styles as they no longer
relate to our application. Let’s do that now.

LESSON 6: Styling React Apps | 89

 Exercise 10: Cleaning Up App.css
 10 to 15 minutes

1. Start up your development server in Exercises/mathificent if it is not running already.

2. With the web app open in your browser, open containers/App.css in your editor.

3. Delete everything in the file and save. Your app should automatically update to look like this:

4. Now, add the following rule:

footer, header {
background-color: #3f7cad;

}

The background color of the header and footer will not change, because this rule is being
overridden by a Bootstrap class. Let’s fix that.

5. Open the Header and Footer components and delete the bg-dark class from the <nav> in
the header and the <footer> tag, so they look like this:

<nav className="navbar navbar-expand-lg navbar-dark">

<footer className="navbar fixed-bottom">

The background color should now be a steel blue.

90 | LESSON 6: Styling React Apps

EVALUATION COPY: Not to be used in class.

6. We chose to style the header and footer in App.css because we want them to look the
same throughout the application.

LESSON 6: Styling React Apps | 91

Solution: React/Solutions/styling/App.css

footer, header {1.
background-color: #3f7cad;2.

}3.

Solution: React/Solutions/styling/Header.js

-------Lines 1 through 5 Omitted-------
<nav className="navbar navbar-expand-lg navbar-dark">6.

-------Lines 7 through 26 Omitted-------

Solution: React/Solutions/styling/Footer.js

-------Lines 1 through 4 Omitted-------
<footer className="navbar fixed-bottom">5.

-------Lines 6 through 15 Omitted-------

92 | LESSON 6: Styling React Apps

EVALUATION COPY: Not to be used in class.

 Exercise 11: Styling the Main Component
 10 to 15 minutes

When we deleted the old styles from App.css, the main content of the page became left aligned. Let’s
move it back to the center and add some additional styling.

1. Start up your development server in Exercises/mathificent if it is not running already.

2. Create a new Main.css file in the components directory and add the following rule to it:

main {
width: 380px;
margin: auto;

}

3. Open Main.js in your editor and import the new Main.css file:

import './Main.css';

4. Now, still in Main.js, place each component within the main element in its own row using
div elements with the “row”, “mx-1”, and “my-3” classes from Bootstrap:

<div className="row mx-1 my-3">
<SelectInput… />

</div>
<div className="row mx-1 my-3">
<SelectInput… />

</div>
<div className="row mx-1 my-3">
<PlayButton… />

</div>

The “row” classes breaks the lines into rows. The “mx-1” and “my-3” classes add horizontal
and vertical margin, respectively. The page will look a little better now.

5. Now, let’s add some Bootstrap classes to the SelectInput and PlayButton components:

A. Open SelectInput.js in your editor. Remember that this component is being
placed inside a Bootstrap “row”.

B. Add the “col” and “fw-bold” classes to the label element.

C. Add the “col” and “form-control” classes to the select element.

LESSON 6: Styling React Apps | 93

Those elements should now look like this:

<label htmlFor={id} className="col fw-bold">{label}</label>
<select id={id}
defaultValue={currentValue}
onChange={(e) => setCurrentValue(e.target.value)}
className="col form-control">
{selectOptions}

</select>

A. Open PlayButton.js in your editor.

B. Add the “form-control” class to the Link element:

<Link className="btn btn-primary form-control" to="/play">Play!</Link>

The page should now appear like this:

94 | LESSON 6: Styling React Apps

EVALUATION COPY: Not to be used in class.

LESSON 6: Styling React Apps | 95

Solution: React/Solutions/styling/Main.js

import React from 'react';1.
import SelectInput from './SelectInput';2.
import PlayButton from './PlayButton';3.
import './Main.css';4.

5.
function Main(props) {6.
const operations = ['+', '-', 'x', '/'];7.
const numbers = [];8.
for (let number = 2; number <= 100; number++) {9.
numbers.push(number);10.

}11.
return(12.
<main>13.
<h1>Mathificent</h1>14.
<div className="row mx-1 my-3">15.
<SelectInput label="Operation"16.
id="operation"17.
currentValue={props.operation}18.
setCurrentValue={props.setOperation}19.
values={operations} />20.

</div>21.
<div className="row mx-1 my-3">22.
<SelectInput label="Maximum Number"23.
id="max-number"24.
currentValue={props.maxNumber}25.
setCurrentValue={props.setMaxNumber}26.
values={numbers} />27.

</div>28.
<div className="row mx-1 my-3">29.
<PlayButton />30.

</div>31.
</main>32.

)33.
}34.

35.
export default Main;36.

Solution: React/Solutions/styling/Main.css

main {1.
width: 380px;2.
margin: auto;3.

}4.

96 | LESSON 6: Styling React Apps

EVALUATION COPY: Not to be used in class.

Solution: React/Solutions/styling/SelectInput.js

import React, {Fragment} from 'react';1.
2.

function SelectInput({label, id, values,3.
currentValue, setCurrentValue}) {4.

const selectOptions = values.map((value)=>5.
<option value={value} key={value.toString()}>{value}</option>6.

);7.
8.

return(9.
<Fragment>10.
<label htmlFor={id} className="col fw-bold">{label}</label>11.
<select id={id}12.
defaultValue = {currentValue}13.
onChange = {(e) => setCurrentValue(e.target.value)}14.
className="col form-control">15.
{selectOptions}16.

</select>17.
</Fragment>18.

)19.
}20.

21.
export default SelectInput;22.

Solution: React/Solutions/styling/PlayButton.js

import React from 'react';1.
import {Link} from 'react-router-dom';2.

3.
function PlayButton() {4.
return(5.
<Link className="btn btn-primary form-control" to="/play">6.
Play!7.

</Link>8.
)9.

}10.
11.

export default PlayButton;12.

LESSON 6: Styling React Apps | 97

 Exercise 12: Improving the Operation
Dropdown

 10 to 15 minutes

Before we add more styles, let’s make a quick improvement to the Operation dropdown. Rather than
show the operation symbols, let’s show the full words (e.g., “Multiplication” in place of “x”).

1. In Main.js, change the definition of the operations constant to and array of arrays:

const operations = [
['Addition', '+'],
['Subtraction', '-'],
['Multiplication', 'x'],
['Division', '/']

];

2. In SelectInput.js, change the option element to treat each value in the values array as
a 2-element array containing a value and a text string:

<option value={value[1]} key={value[0].toString()}>{value[0]}</option>

3. This change will break our Maximum Number dropdown. To fix it, go back to Main.js
and change the code to push an array onto numbers for each number:

const numbers = [];
for (let number = 2; number <= 100; number++) {
numbers.push([number, number]);

}

The Operation dropdown should now look like this:

98 | LESSON 6: Styling React Apps

EVALUATION COPY: Not to be used in class.

LESSON 6: Styling React Apps | 99

Solution: React/Solutions/styling/Main-2.js

-------Lines 1 through 5 Omitted-------
function Main(props) {6.
const operations = [7.
['Addition', '+'],8.
['Subtraction', '-'],9.
['Multiplication', 'x'],10.
['Division', '/']11.

];12.
const numbers = [];13.
for (let number = 2; number <= 100; number++) {14.
numbers.push([number, number]);15.

}16.
-------Lines 17 through 41 Omitted-------

Solution: React/Solutions/styling/SelectInput-2.js

-------Lines 1 through 4 Omitted-------
const selectOptions = values.map((value)=>5.
<option value={value[1]} key={value[0].toString()}>{value[0]}</option>6.

);7.
-------Lines 8 through 22 Omitted-------

❋

6.2. Inline Styles

In HTML, it is possible to apply CSS properties to elements by passing them directly into the style
attribute of the element, like this:

<p style="padding: 1em; color: blue; font-family: sans-serif;">
Paragraph content.

</p>

But this is considered bad practice largely because it makes managing styles difficult.

In React, however, you’re writing reusable components. Styles that you apply in a single React element
define the base styles for that element, which may be reused many times in your user interface. React
uses its own style attribute (written using JSX, not HTML and CSS) to apply styles inside of a
component. Here’s an example of using a style attribute in JSX:

100 | LESSON 6: Styling React Apps

EVALUATION COPY: Not to be used in class.

<p style={
{

padding: "1em",
color: "blue",
fontFamily: "sans-serif"

}
}>Paragraph content.</p>

The JSX style attribute looks somewhat similar to the HTML style attribute, but it has a few
important differences because it is JavaScript:

1. The value of the style attribute is surrounded by curly braces, to indicate to the JSX processor
that it is JavaScript code embedded in JSX.

2. Inside the first curly braces are another set of curly braces which create a JavaScript object.

3. The property names are JavaScript style properties, rather than CSS properties. The
differences is that in JavaScript style properties, lowerCamelCase is used in place of dashes
for multi-word property names: for example, CSS’s font-family becomes fontFamily,
background-color becomes backgroundColor, etc.

4. JavaScript style properties are separated by commas, rather than by semicolons.

5. The values of JavaScript style properties must adhere to the rules of JavaScript variables (for
example, strings must be enclosed in quotes).

You can also create a style object like this:

const blueParagraph = {
padding: "1em",
color: "blue",
fontFamily: "sans-serif"

}

Then, you can use the name of this object inside single curly braces as the value of one or multiple
style attributes. If you use this technique, you can also define the style objects in a separate file and
then import them into your components, which allows you to reuse the same styles for multiple
components.

return (
<p style={blueParagraph}></p>

);

LESSON 6: Styling React Apps | 101

 Exercise 13: Creating the Game
Component
 25 to 40 minutes

In this exercise, you will create the Game component for Mathificent. The Game is where the user will
see random math problems and will be able to enter the solutions to the problems. To see what the
final game looks like, run npm install and then npm start from mathificent-final and play
around. Be sure to stop the server before moving on to the exercise.

1. Here is what the game will look like when it is complete:

Using this screenshot, try to identify the individual elements that make up the user interface
of the game.

2. Think about how many different components you need to make to build this user interface.
It has:

A. A score.
B. A timer.

102 | LESSON 6: Styling React Apps

EVALUATION COPY: Not to be used in class.

C. An equation.
D. Ten number buttons.
E. A clear button.

You could lay that out in rows and columns like this:

Note that the buttons are all in a single row, but are constrained by the width of the container.

3. Start up your development server in Exercises/mathificent if it is not running already.
Press the Play button to show the game. As you proceed through the exercise, keep an
eye on the web browser to see how the interface changes.

4. Create the following new components with the return values shown:

A. Score

Score: {props.score}

B. Timer

Time: {props.timeLeft}

LESSON 6: Styling React Apps | 103

C. Equation

<Fragment>
<div className="col-5">{props.question}</div>
<div className="col-2">=</div>
<div className="col-5">{props.answer}</div>

</Fragment>

Be sure to import Fragment from 'react'.

D. NumberButton

<button className="btn btn-primary">{props.value}</button>

E. ClearButton

<button className="btn btn-primary">Clear</button>

5. Using import statements, include each of these new components into Game.

6. In the return statement of Game, place:

A. One Score component.

B. One Timer component.

C. One Equation component.

D. Ten NumberButton components.

E. One ClearButton component.

104 | LESSON 6: Styling React Apps

EVALUATION COPY: Not to be used in class.

Use the following code, which lays out the game using Bootstrap classes. Notice that we use
attributes to pass in values to the child components:

<main className="text-center" id="game-container">
<div className="row border-bottom">
<div className="col px-3 text-left">
<Score score="0" />

</div>
<div className="col px-3 text-right">
<Timer timeLeft="60" />

</div>
</div>
<div className="row text-secondary my-2" id="equation">
<Equation question="1 + 1" answer="2" />

</div>
<div className="row" id="buttons">
<div className="col">
<NumberButton value="1" />
<NumberButton value="2" />
<NumberButton value="3" />
<NumberButton value="4" />
<NumberButton value="5" />
<NumberButton value="6" />
<NumberButton value="7" />
<NumberButton value="8" />
<NumberButton value="9" />
<NumberButton value="0" />
<ClearButton />

</div>
</div>

</main>

7. Your app should now look something like this:

LESSON 6: Styling React Apps | 105

Don’t worry. We will make it better.

8. Create a new file in the components directory named Game.css and open it in your editor.
Add the following code to Game.css:

#game-container {
margin: 1em auto;
width: 380px;

}

#equation {
font-size: 1.6em;
margin: auto;
width: 90%;

}

#buttons button {
border-radius: .25em;
font-size: 3em;
height: 2em;
margin: .1em;
text-align: center;
width: 2em;

}

106 | LESSON 6: Styling React Apps

EVALUATION COPY: Not to be used in class.

9. Import Game.css into Game.js:

import './Game.css';

10. All the buttons, including the Clear button have the same width. We want the Clear button
to be wider. We could create a ClearButton.css file, but that seems like a little overkill.
Instead, add the following inline style in the ClearButton component:

<button className="btn btn-primary" style={{width: "4.2em"}}>Clear</button>

11. The only remaining thing we need to do is beef up the font size of the first row a little. In the
Game component, add the following style to the first row:

<div className="row border-bottom" style={{fontSize: "1.5em"}}>

The app should now look like the screenshot at the beginning of this exercise.

 E13.1. Using map() with NumberButton

Although this doesn’t pertain to styling, we can output the ten instances of the NumberButton
component in a more efficient way by using an array and the Array.map() method:

1. In the Game component, use the following code to create an array of numbers and then loop
through that array to create an array of NumberButton components. This should go inside
the function, but before the return statement:

const numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0];
const numberButtons = numbers.map((number) =>
<NumberButton value={number} key={number} />

);

Notice the key attribute. Any time you create a list of elements in React, it is important to
supply a unique key attribute to each element in the list to help React perform updates in the
most efficient way.

2. In the return statement, replace the list of NumberButton elements with {numberButtons}.
This will cause the items in the array to be rendered individually, resulting in ten buttons
being output.

The page should still look the same.

LESSON 6: Styling React Apps | 107

Solution: React/Solutions/styling/Game.css

#game-container {1.
margin: 1em auto;2.
width: 380px;3.

}4.
5.

#equation {6.
font-size: 1.6em;7.
margin: auto;8.
width: 90%;9.

}10.
11.

#buttons button {12.
border-radius: .25em;13.
font-size: 3em;14.
height: 2em;15.
margin: .1em;16.
text-align: center;17.
width: 2em;18.

}19.

108 | LESSON 6: Styling React Apps

EVALUATION COPY: Not to be used in class.

Solution: React/Solutions/styling/Game.js

import React from 'react';1.
import Score from './Score';2.
import Timer from './Timer';3.
import Equation from './Equation';4.
import NumberButton from './NumberButton';5.
import ClearButton from './ClearButton';6.
import './Game.css';7.

8.
function Game(props) {9.

10.
const numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0];11.
const numberButtons = numbers.map((number) =>12.
<NumberButton value={number} key={number} />13.

);14.
15.

return (16.
<main className="text-center" id="game-container">17.
<div className="row border-bottom" style={{fontSize: "1.5em"}}>18.
<div className="col px-3 text-left">19.
<Score score="0" />20.

</div>21.
<div className="col px-3 text-right">22.
<Timer timeLeft="60" />23.

</div>24.
</div>25.
<div className="row text-secondary my-2" id="equation">26.
<Equation question="1 + 1" answer="2" />27.

</div>28.
<div className="row" id="buttons">29.
<div className="col">30.
{numberButtons}31.
<ClearButton />32.

</div>33.
</div>34.

</main>35.
)36.

}37.
38.

export default Game;39.

LESSON 6: Styling React Apps | 109

Solution: React/Solutions/styling/ClearButton.js

import React from 'react';1.
2.

function ClearButton(props) {3.
return (4.
<button className="btn btn-primary"5.
style={{width: "4.2em"}}>Clear</button>6.

)7.
}8.

9.
export default ClearButton;10.

Solution: React/Solutions/styling/NumberButton.js

import React from 'react';1.
2.

function NumberButton(props) {3.
return (4.
<button className="btn btn-primary">{props.value}</button>5.

)6.
}7.

8.
export default NumberButton;9.

Solution: React/Solutions/styling/Equation.js

import React, {Fragment} from 'react';1.
2.

function Equation(props) {3.
return (4.
<Fragment>5.
<div className="col-5">{props.question}</div>6.
<div className="col-2">=</div>7.
<div className="col-5">{props.answer}</div>8.

</Fragment>9.
)10.

}11.
12.

export default Equation;13.

110 | LESSON 6: Styling React Apps

EVALUATION COPY: Not to be used in class.

Solution: React/Solutions/styling/Timer.js

import React from 'react';1.
2.

function Timer(props) {3.
return (4.
Time: {props.timeLeft}5.

)6.
}7.

8.
export default Timer;9.

Solution: React/Solutions/styling/Score.js

import React from 'react';1.
2.

function Score(props) {3.
return (4.
Score: {props.score}5.

)6.
}7.

8.
export default Score;9.

❋

6.3. A Word of Caution

It is tempting to think that style modules imported into a component will only affect that component.
However, that is not the case. To illustrate, we’ll look at the following files:

LESSON 6: Styling React Apps | 111

Demo 6.3: React/demo-viewer/src/Demos/styling/Apple.js

import React from 'react';1.
import './Apple.css';2.

3.
function Apple() {4.

return (5.
<div className="fruit">6.
Apple7.

</div>8.
);9.

}10.
11.

export default Apple;12.

Demo 6.4: React/demo-viewer/src/Demos/styling/Apple.css

.fruit {1.
background-color: black;2.
color: red;3.
text-decoration: underline;4.

}5.

Demo 6.5: React/demo-viewer/src/Demos/styling/Banana.js

import React from 'react';1.
import './Banana.css';2.

3.
function Banana() {4.

return (5.
<div className="fruit">6.
Banana7.

</div>8.
);9.

}10.
11.

export default Banana;12.

Demo 6.6: React/demo-viewer/src/Demos/styling/Banana.css

.fruit {1.
color: yellow;2.
font-style: italic;3.

}4.

112 | LESSON 6: Styling React Apps

EVALUATION COPY: Not to be used in class.

Notice that the Apple and Banana components each import their own stylesheets. Both stylesheets
create a fruit class. The classes are different though: the fruit class in Apple.css is red and
underlined, while the fruit class in Banana.css is yellow and italic. But the end result, as shown in
the following screenshot, is that all styles get applied to both components.

Because color was set in both CSS files, one value (in this case, yellow) overrides the other (red).

To see this in your browser, start up the demo-viewer app and click the Apple and Banana links under
Component Style.

The takeaway is that you must be careful when using imported stylesheets. One solution is to use ids
in combination with classes. For example, you could add “apple” and “banana” ids to the main divs
in the two components and then change your CSS selectors to #apple.fruit and #banana.fruit.

Conclusion

In this lesson, you have learned how to use style in React components and applications.

LESSON 6: Styling React Apps | 113

114 | LESSON 6: Styling React Apps

EVALUATION COPY: Not to be used in class.

LESSON 7
Implementing Game Logic

Topics Covered

 Working with your new React skills.

Introduction

In this lesson, you will build out most of the Mathificent game in a series of exercises.

LESSON 7: Implementing Game Logic | 115

 Exercise 14: Setting the Equation
 45 to 60 minutes

In this exercise, you will write the code to create the equations displayed in Mathificent.

1. Start up your development server in Exercises/mathificent if it is not running already.
You should keep it running throughout this lesson.

2. We will need to generate random integers for the equation. The function for generating
random integers is not specific to Mathificent, so we will put it in a separate helpers.js file
and import it:

A. Create a new folder within the src folder called helpers.

B. Within the helpers folder, create a file called helpers.js.

C. In the Exercises/starter-code.txt file, you will find a JavaScript function
called randInt() that looks like this:

export function randInt(low, high) {
const rndDec = Math.random();
return Math.floor(rndDec * (high - low + 1) + low);

}

Copy and paste that code into helpers.js and save.

D. Open Game.js in your editor.

E. Beneath the other imports, import the randInt() function from helpers.js using
this code:

import {randInt} from '../helpers/helpers';

3. Destructure props in the Game() function so that we can refer to operation and maxNumber
directly without having to prefix them with props:

function Game({operation, maxNumber}) {…

Remember that operation and maxNumber are passed in from App.js:

<Game operation={operation} maxNumber={maxNumber} />

116 | LESSON 7: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

4. Add the getRandNumbers() function at the beginning of the Game() function right after:

function Game({operation, maxNumber}) {

If you don’t want to type it out, you can copy and paste the function from the Exercis
es/starter-code.txt file:

function getRandNumbers(operator, low, high) {
let num1 = randInt(low, high);
let num2 = randInt(low, high);
const numHigh = Math.max(num1, num2);
const numLow = Math.min(num1, num2);

if(operator === '-') { // Make sure higher num comes first
num1 = numHigh;
num2 = numLow;

}

if(operator === '/') {
if (num2 === 0) { // No division by zero
num2 = randInt(1, high);

}
num1 = (num1 * num2); // product

}
return {num1, num2};

}

Review this function carefully. See how it returns an object with two numbers that will make
up the equation: num1 will be the operand before the operator and num2 will be the operand
after the operator.1

5. We are going to use some state variables in this component, so import useState from ‘react’:

import React, {useState} from 'react';

6. Above the getRandNumbers() function that you just pasted in, type the following to create
the state variables:

let randNums = getRandNumbers(operation, 0, maxNumber);
const [operands, setOperands] = useState(randNums);

1. The operands are the numbers being operated on by the operator. In 5 + 3, 5 and 3 are the operands.

LESSON 7: Implementing Game Logic | 117

randNums is a variable (rather than a constant) because we will get new random
numbers each time the user answers a question correctly.

We will assign new random numbers to the state variable operands using
setOperands() every time we get a new question (equation).

7. Create a constant called question as shown here:

const question = operands.num1 + ' ' + operation +
' ' + operands.num2;

Remember that React will react to changes. So when the state variable operands changes,
question will change as well.

8. Finally, pass question into the <Equation> tag in place of the placeholder text that is there
now:

<Equation question={question} answer="2" />

9. Let’s see how it works in your browser:

A. On the Mathificent home page, click Play!. Notice that the equation is randomly
generated.

B. Refresh the page. Notice that the equation changes.
C. Return to the home page and change the operation to division and maximum number

to 100. Then, press Play! Notice that you get a division problem, possibly a difficult
one.

10. But the user doesn’t yet have a way to answer the question. We’ll tackle that next.

118 | LESSON 7: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

LESSON 7: Implementing Game Logic | 119

Solution: React/Solutions/implementing/Game1.js

import React, {useState} from 'react';1.
-------Lines 2 through 7 Omitted-------
import {randInt} from '../helpers/helpers';8.

9.
function Game({operation, maxNumber}) {10.

11.
let randNums = getRandNumbers(operation, 0, maxNumber);12.
const [operands, setOperands] = useState(randNums);13.
const question = operands.num1 + ' ' + operation +14.

' ' + operands.num2;15.
16.

function getRandNumbers(operator, low, high) {17.
let num1 = randInt(low, high);18.
let num2 = randInt(low, high);19.
const numHigh = Math.max(num1, num2);20.
const numLow = Math.min(num1, num2);21.

22.
if(operator === '-') { // Make sure higher num comes first23.
num1 = numHigh;24.
num2 = numLow;25.

}26.
27.

if(operator === '/') {28.
if (num2 === 0) { // No division by zero29.
num2 = randInt(1, high);30.

}31.
num1 = (num1 * num2); // product32.

}33.
return {num1, num2};34.

}35.
-------Lines 36 through 41 Omitted-------
return (42.
<main className="text-center" id="game-container">43.
<div className="row border-bottom" style={{fontSize: "1.5em"}}>44.
<div className="col px-3 text-left">45.
<Score score="0" />46.

</div>47.
<div className="col px-3 text-right">48.
<Timer timeLeft="60" />49.

</div>50.
</div>51.
<div className="row text-secondary my-2" id="equation">52.
<Equation question={question} answer="2" />53.

120 | LESSON 7: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

</div>54.
<div className="row" id="buttons">55.
<div className="col">56.
{numberButtons}57.
<ClearButton />58.

</div>59.
</div>60.

</main>61.
);62.

-------Lines 63 through 65 Omitted-------

LESSON 7: Implementing Game Logic | 121

 Exercise 15: Getting the User’s Answer
 30 to 45 minutes

In this exercise, you will write the code to let the user answer the question and then follow that up with
another random question. You will need to capture the user’s clicks on the buttons and modify the
user’s answer accordingly.

1. In the Game component, add a state variable for the user’s answer:

const [userAnswer, setUserAnswer] = useState('');

This must be a state variable because we need to share it between components and re-render
when it changes.

2. Create a function for updating the user’s answer. Call the function appendToAnswer():

function appendToAnswer(num) {
setUserAnswer(userAnswer + num);

}

In the code that generates the numberButtons array, pass this function to the NumberButton
components:

const numberButtons = numbers.map((number) =>
<NumberButton value={number} key={number}
handleClick={appendToAnswer} />

);

3. Open the NumberButton component and add an onClick event handler to update
userAnswer when a button is clicked:

<button className="btn btn-primary"
onClick={() => {props.handleClick(props.value)}}>…

This calls the function passed into handleClick via props (appendToAnswer()) and passes
it the button’s value. Remember appendToAnswer() just adds the passed-in value to
userAnswer.

122 | LESSON 7: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

4. Finally, pass userAnswer into the <Equation> tag in place of the placeholder text that is
there now:

<Equation question={question} answer={userAnswer} />

5. Test the solution in your browser:

A. On the Mathificent home page, click Play!.
B. Click some number buttons. The answer should update with your clicks.
C. Refresh the page. Click the “0” button. Now click another button. Notice that the

“0” stays at the beginning of the user’s answer, which makes sense, because the
appendToAnswer() function just appends the value of the clicked button to
userAnswer. But it’s not ideal. We would like answers like “09” to be converted to
just “9”. An easy way to do that in JavaScript is to convert the string to a number
and then back to a string. For example:

let num = '09';
num = Number(num);
num = String(num);
console.log(num); // '9'

In a single step, it would look like this:

num = String(Number(num));

Fix the appendToAnswer() function to get rid of leading “0”s:

function appendToAnswer(num) {
setUserAnswer(String(Number(userAnswer + num)));

}

6. Let’s get the Clear button working as well:

A. We just have to make the Clear button set userAnswer back to an empty string.
We can do that by passing it the setUserAnswer function:

<ClearButton handleClick={setUserAnswer} />

LESSON 7: Implementing Game Logic | 123

B. Now, in the ClearButton component, we’ll handle the click just as we did in the
NumberButton component:

<button className="btn btn-primary" style={{width: "4.2em"}}
onClick={() => {props.handleClick('');}}>Clear</button>

Remember that props.handleClick holds setUserAnswer, so a click ultimately
results in a call to setUserAnswer(''), which clears userAnswer.

C. Try it out in your browser: just enter a wrong answer and press Clear. The answer
should go away.

7. Now we need to check if the user answered the question correctly. We’ll handle that next.

124 | LESSON 7: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

LESSON 7: Implementing Game Logic | 125

Solution: React/Solutions/implementing/Game2.js

-------Lines 1 through 9 Omitted-------
function Game({operation, maxNumber}) {10.

11.
let randNums = getRandNumbers(operation, 0, maxNumber);12.
const [operands, setOperands] = useState(randNums);13.
const question = operands.num1 + ' ' + operation +14.

' ' + operands.num2;15.
16.

const [userAnswer, setUserAnswer] = useState('');17.
18.

function appendToAnswer(num) {19.
setUserAnswer(String(Number(userAnswer + num)));20.

}21.
-------Lines 22 through 42 Omitted-------
const numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0];43.
const numberButtons = numbers.map((number) =>44.
<NumberButton value={number} key={number}45.
handleClick={appendToAnswer} />46.

);47.
48.

return (49.
<div className="text-center" id="game-container">50.
<div className="row border-bottom" style={{fontSize: "1.5em"}}>51.
<div className="col px-3 text-left">52.
<Score score="0" />53.

</div>54.
<div className="col px-3 text-right">55.
<Timer timeLeft="60" />56.

</div>57.
</div>58.
<div className="row text-secondary my-2" id="equation">59.
<Equation question={question} answer={userAnswer} />60.

</div>61.
<div className="row" id="buttons">62.
<div className="col">63.
{numberButtons}64.
<ClearButton handleClick={setUserAnswer} />65.

</div>66.
</div>67.

</div>68.
);69.

-------Lines 70 through 72 Omitted-------

126 | LESSON 7: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

Solution: React/Solutions/implementing/NumberButton.js

import React from 'react';1.
2.

function NumberButton(props) {3.
return (4.
<button className="btn btn-primary"5.
onClick={() => {props.handleClick(props.value)}}>6.
{props.value}7.

</button>8.
)9.

}10.
11.

export default NumberButton;12.

Solution: React/Solutions/implementing/ClearButton.js

import React from 'react';1.
2.

function ClearButton(props) {3.
return (4.
<button className="btn btn-primary" style={{width: "4.2em"}}5.
onClick={() => {props.handleClick('');}}>Clear</button>6.

);7.
}8.

9.
export default ClearButton;10.

LESSON 7: Implementing Game Logic | 127

 Exercise 16: Checking the User’s Answer
 45 to 60 minutes

In this exercise, you will write the code to handle correct answers. You will need to:

1. Compare the user’s answer with the correct answer.

2. When the user’s answer matches the correct answer, increment the score by 1 and show a new
question.

Let’s give it a try.

1. In the Game component, add a state variable for the score:

const [score, setScore] = useState(0);

And pass score into the <Score> tag in place of the placeholder text that is there now:

<Score score={score} />

128 | LESSON 7: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

2. Add a checkAnswer() function to compare the user’s answer with the correct answer. If you
don’t want to type it out, you can copy and paste the function from the Exercises/starter-
code.txt file:

function checkAnswer(userAnswer) {
if (isNaN(userAnswer)) return false; // User hasn’t answered

let correctAnswer;
switch(operation) {
case '+':
correctAnswer = operands.num1 + operands.num2;
break;

case '-':
correctAnswer = operands.num1 - operands.num2;
break;

case 'x':
correctAnswer = operands.num1 * operands.num2;
break;

default: // division
correctAnswer = operands.num1 / operands.num2;

}
return (parseInt(userAnswer) === correctAnswer);

}

3. Add the following code below the checkAnswer() function to call checkAnswer() on each
re-rendering:

if (checkAnswer(userAnswer)) {
setScore(score + 1);

}

4. Try this out. When you get a correct answer, you will either get a blank page or get an error
similar to this one:

LESSON 7: Implementing Game Logic | 129

If you get a blank page, you can see the error in the JavaScript console. The reason for this
error is that userAnswer has been set to a value equal to the correct answer, so we get stuck
in this infinite loop:

A. if (checkAnswer(userAnswer)) - The condition is true, so we execute the body
of the condition…

B. setScore(score + 1); - This changes a state variable, which results in a
re-rendering…

C. When the page is re-rendered, it will check the if condition again: if
(checkAnswer(userAnswer)). As neither userAnswer nor the correct answer
have been modified, the condition returns true again, taking us back to step B in
which we change the value of score. And this will repeat infinitely.

5. We will handle this problem by creating another state variable named answered, which we
will set to true when the user answers a question. Then we will modify the if condition to
only call checkAnswer() if answered is false. Below the userAnswer state variable, create
the answered state variable:

const [answered, setAnswered] = useState(false);

Modify the if condition as follows:

if (!answered && checkAnswer(userAnswer)) {
setAnswered(true);
setScore(score + 1);

}

130 | LESSON 7: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

Now, the first time that (!answered && checkAnswer(userAnswer)) returns true,
answered will be set to true as well, so on the next re-rendering, the (!answered &&
checkAnswer(userAnswer)) will return false.

6. Try it again in the browser. This time, when you answer the question correctly, the score
should update to 1.

7. Next, we need to change the question after the user answers correctly. Add the following
function to the Game component:

function newQuestion() {
setUserAnswer('');
setAnswered(false);
randNums = getRandNumbers(operation, 0, maxNumber);
setOperands(randNums);

}

This sets userAnswer back to an empty string, sets answered back to false, assigns new
random numbers to randNums and assigns them to operands. As this function changes several
state variables, it will result in a re-rendering, showing the new equation. Now we just need
to call the function after the user gets a correct answer. Do that at the end of the if condition
checking for a correct answer:

if (!answered && checkAnswer(userAnswer)) {
setAnswered(true);
setScore(score + 1);
newQuestion();

}

8. Try it again in the browser. You should now be able to answer question after question for
forever and ever.

9. The question changes are a little abrupt. It’d be nice to fade the old question out. We will use
the Bootstrap “fade” class for this. In the Game component, add a constant called
equationClass whose value depends on the value of answered. You can add it right before
the return statement:

const equationClass = answered
? 'row my-2 text-primary fade'
: 'row my-2 text-secondary';

LESSON 7: Implementing Game Logic | 131

Now, change the class of the div containing the <Equation> tag to use equationClass:

<div className={equationClass} id="equation">
<Equation question={question} answer={userAnswer} />

</div>

Finally, we need to add a little delay before getting the next question so that the user has time
to see the fade effect. In the if condition where you call newQuestion(), use a setTimeout
to delay that call by 300 milliseconds:

if (!answered && checkAnswer(userAnswer)) {
setAnswered(true);
setScore(score + 1);
setTimeout(newQuestion, 300);

}

Things are working pretty well! Time to implement our timer.

132 | LESSON 7: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

LESSON 7: Implementing Game Logic | 133

Solution: React/Solutions/implementing/Game3.js

-------Lines 1 through 9 Omitted-------
function Game({operation, maxNumber}) {10.

11.
let randNums = getRandNumbers(operation, 0, maxNumber);12.
const [operands, setOperands] = useState(randNums);13.
const question = operands.num1 + ' ' + operation +14.

' ' + operands.num2;15.
16.

const [userAnswer, setUserAnswer] = useState('');17.
const [answered, setAnswered] = useState(false);18.
const [score, setScore] = useState(0);19.

20.
function appendToAnswer(num) {21.
setUserAnswer(String(Number(userAnswer + num)));22.

}23.
24.

function checkAnswer(userAnswer) {25.
if (isNaN(userAnswer)) return false; // User hasn't answered26.

27.
let correctAnswer;28.
switch(operation) {29.
case '+':30.
correctAnswer = operands.num1 + operands.num2;31.
break;32.

case '-':33.
correctAnswer = operands.num1 - operands.num2;34.
break;35.

case 'x':36.
correctAnswer = operands.num1 * operands.num2;37.
break;38.

default: // division39.
correctAnswer = operands.num1 / operands.num2;40.

};41.
return (parseInt(userAnswer) === correctAnswer);42.

}43.
44.

if (!answered && checkAnswer(userAnswer)) {45.
setAnswered(true);46.
setScore(score + 1);47.
setTimeout(newQuestion, 300);48.

}49.
50.

function newQuestion() {51.
setUserAnswer('');52.

134 | LESSON 7: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

setAnswered(false);53.
randNums = getRandNumbers(operation, 0, maxNumber);54.
setOperands(randNums);55.

}56.
-------Lines 57 through 83 Omitted-------
const equationClass = answered84.
? 'row my-2 text-primary fade'85.
: 'row my-2 text-secondary';86.

87.
return (88.
<div className="text-center" id="game-container">89.
<div className="row" style={{fontSize: "1.5em"}}>90.
<div className="col px-3 text-left">91.
<Score score={score} />92.

</div>93.
<div className="col px-3 text-right">94.
<Timer timeLeft="60" />95.

</div>96.
</div>97.
<div className={equationClass} id="equation">98.
<Equation question={question} answer={userAnswer} />99.

</div>100.
<div className="row" id="buttons">101.
<div className="col">102.
{numberButtons}103.
<ClearButton handleClick={setUserAnswer} />104.

</div>105.
</div>106.

</div>107.
);108.

}109.
110.

export default Game;111.

LESSON 7: Implementing Game Logic | 135

 Exercise 17: Creating the Timer
 20 to 30 minutes

In this exercise, you will add the countdown timer.

1. Open the Timer component. Add the following code above the return statement:

if (props.timeLeft > 0) {
setTimeout(() => {
props.setTimeLeft(props.timeLeft - 1);

}, 1000)
};

This uses setTimeout() to decrement timeLeft by 1 every 1000 milliseconds (1 second)
until timeLeft is 0.

2. Open the Game component. Below the score state variable, create a gameLength constant
to hold the number of seconds a game should last:

const gameLength = 60;

Below that create a timeLeft state variable and set it to gameLength:

const [timeLeft, setTimeLeft] = useState(gameLength);

3. Change the <Timer> tag to pass timeLeft and setTimeLeft to the Timer component:

<Timer timeLeft={timeLeft} setTimeLeft={setTimeLeft} />

4. Your timer should be working now. The next step is to change the screen when timeLeft
hits 0. Add the following restart() function. You can place it below the newQuestion()
function:

function restart() {
setTimeLeft(gameLength);
setScore(0);
newQuestion();

}

This sets timeLeft back to gameLength and score back to 0. It also generates a new question.

136 | LESSON 7: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

5. Add the following code above the return statement:

if (timeLeft === 0) {
return (
<div className="text-center" id="game-container">
<h2>Time’s Up!</h2>
<strong style={{fontSize: "1.5em"}}>You Answered
<div style={{fontSize: "5em"}}>{score}</div>
<strong style={{fontSize: "1.5em"}}>
Questions Correctly

<button className="btn btn-primary form-control m-1"
onClick={restart}>
Play Again with Same Settings

</button>
<Link className="btn btn-secondary form-control m-1" to="/">
Change Settings

</Link>
</div>

)
}

Remember that once a function returns something, it is finished executing. In this case, we
are checking if timeLeft is equal to 0. If it is, we are returning a Time’s Up! screen. If it
isn’t, we move past this code and return the Game screen. Two important things to note:

Clicking the Play Again with Same Settings button will call restart(), which
will set timeLeft back to gameLength resulting in a re-rendering. On that
re-rendering, since timeLeft will no longer be 0, the Game screen will be displayed.

The Link element points to “/”, which leads to the home page. For the Link tag to
work, we need to import Link. Add this code below the first import at the top of
the page:

import {Link} from 'react-router-dom';

Everything should work now, including the timer, but it’s a little glitchy. If you haven’t noticed any
glitches, try this:

1. Change the value of gameLength to 5, so that games end quickly.

LESSON 7: Implementing Game Logic | 137

2. Start playing. Set yourself up to answer a question correctly right before the timer runs out.
For example, if the question is 5 + 7, click the 1 button and then wait until the timer reads
“1”. As soon as it does, click the 2 button to answer “12”.

3. As soon as the Time’s Up! screen shows up, click Play Again with Same Settings.

4. The result will be that the screen switches between the Time’s Up! screen and the Game
screen once or twice before settling on the Game screen. If you don’t see this the first time,
try it a couple of times. We will learn how to fix this in the next lesson.

138 | LESSON 7: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

LESSON 7: Implementing Game Logic | 139

Solution: React/Solutions/implementing/Game4.js

import React, {useState} from 'react';1.
import {Link} from 'react-router-dom';2.
-------Lines 3 through 21 Omitted-------
const gameLength = 60; // Seconds22.
const [timeLeft, setTimeLeft] = useState(gameLength);23.

-------Lines 24 through 61 Omitted-------
function restart() {62.
setTimeLeft(gameLength);63.
setScore(0);64.
newQuestion();65.

}66.
67.

-------Lines 68 through 97 Omitted-------
if (timeLeft === 0) {98.
return (99.
<div className="text-center" id="game-container">100.
<h2>Time's Up!</h2>101.
<strong style={{fontSize: "1.5em"}}>You Answered102.
<div style={{fontSize: "5em"}}>{score}</div>103.
<strong style={{fontSize: "1.5em"}}>Questions Correctly104.
<button className="btn btn-primary form-control m-1"105.
onClick={restart}>106.
Play Again with Same Settings107.

</button>108.
<Link className="btn btn-secondary form-control m-1" to="/">109.
Change Settings110.

</Link>111.
</div>112.

);113.
}114.

115.
return (116.
<div className="text-center" id="game-container">117.
<div className="row" style={{fontSize: "1.5em"}}>118.
<div className="col px-3 text-left">119.
<Score score={score} />120.

</div>121.
<div className="col px-3 text-right">122.
<Timer timeLeft={timeLeft} setTimeLeft={setTimeLeft} />123.

</div>124.
</div>125.
<div className={equationClass} id="equation">126.
<Equation question={question} answer={userAnswer} />127.

140 | LESSON 7: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

</div>128.
<div className="row" id="buttons">129.
<div className="col">130.
{numberButtons}131.
<ClearButton handleClick={setUserAnswer} />132.

</div>133.
</div>134.

</div>135.
);136.

-------Lines 137 through 139 Omitted-------

Solution: React/Solutions/implementing/Timer.js

import React from 'react';1.
2.

function Timer(props) {3.
4.

if (props.timeLeft > 0) {5.
setTimeout(() => {6.
props.setTimeLeft(props.timeLeft - 1);7.

}, 1000)8.
};9.

10.
return (11.
Time: {props.timeLeft}12.

)13.
}14.

15.
export default Timer;16.

Conclusion

In this lesson, you have used your React and JavaScript skills to build out the Mathificent game. We
have a couple of improvements to make, but the game is usable at this point.

LESSON 7: Implementing Game Logic | 141

142 | LESSON 7: Implementing Game Logic

EVALUATION COPY: Not to be used in class.

LESSON 8
React Effects

Topics Covered

 The purpose of hooks.

 The useEffect hook.

Introduction

Hooks make it possible to add functionality to a React application without adding new components.
In this lesson, you’ll learn how to make use of React’s built-in useEffect hook.

❋

8.1. React Hooks

Hooks are functions that let you hook into React state and lifecycle features from function components.
To use built-in React Hooks, you need to import the hook from the React library. For example, we
have already been using the useState hook, which is imported like this:

import React, {useState} from 'react';

Once you’ve imported the Hook, you can call it like you would call any function. It’s important to be
aware of what values to pass as arguments to the Hook and what values it will return. You can find out
about all the details in the React Hooks API documentation2.

The useState hook accepts one argument, which is the initial value of the stateful variable you’re
creating, and returns a stateful variable and a function for updating that variable.

❋

2. https://reactjs.org/docs/hooks-reference.html

LESSON 8: React Effects | 143

https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html

8.2. The useEffect Hook

The useEffect hook gives you access to the lifecycle of function components. For example, it’s quite
common to need to do some sort of setup or data retrieval as soon as a component first loads (or
“mounts”). With the useEffect hook, you can run a function when a function component mounts,
when it’s updated, when it’s about to be unmounted, or when all of these events happen. You can also
specify specific state variables that, when changed, will trigger the effect.

 8.2.1. The Need for useEffect

To understand the need for the useEffect hook, we’ll first look at a component that doesn’t use it:

Demo 8.1: React/demo-viewer/src/Demos/effect-hook/LightBulb1.js

import React, {useState} from 'react';1.
import ToggleButton from './ToggleButton';2.

3.
function LightBulb1() {4.

5.
const [on, setOn] = useState(true);6.
const [count, setCount] = useState(0);7.

8.
document.title = on ? 'Light is on!' : 'Light is off!';9.
document.body.style.backgroundColor = on ? 'orange' : 'white';10.
console.log('Changing title and background color.');11.

12.
return (13.
<div className="container">14.
<ToggleButton on={on} setOn={setOn} />15.
<button className="btn btn-primary" onClick={() => {16.
setCount(count + 1);17.

}}>{count}</button>18.
</div>19.

)20.
}21.
export default LightBulb1;22.

Code Explanation

1. To run this demo, open React/demo-viewer in the terminal by right-clicking the folder
and selecting Open in Integrated Terminal:

144 | LESSON 8: React Effects

EVALUATION COPY: Not to be used in class.

2. Run npm start to launch the demo-viewer React application.

3. Open the Chrome developer console.

4. Click the LightBulb1 link under useEffect. You should see a page like the one shown below:

Notice that the document title on the tab reads “Light is on!” That is a result of this code,
which uses JavaScript’s ternary operator to set a value for document.title based on the value
of on, which is initially set to true:

document.title = on ? 'Light is on!' : 'Light is off!';

Also, notice that the background color of the page has been set to orange. That is a result of
this code:

document.body.style.backgroundColor = on ? 'orange' : 'white';

LESSON 8: React Effects | 145

Finally, notice that “Changing title and background color.” has been logged to the console,
which is a result of this line:

console.log('Changing title and background color.');

5. The important thing to realize is that those lines of code will run every time this component
is rendered, which will happen with every change of state. To see this, click the first button,
which just toggles the value of the state variable on between true and false and changes the
text of the button accordingly. Notice that each time you press the button, the title on the
tab changes and “Changing title and background color.” gets logged to the console. That may
be represented by a number in a circle indicating the number of times the page has logged
the same thing:

When you click the Turn On / Turn Off button, the logging is accurate: the title and
background color are indeed changing. But now click the second button, which just keeps
track of the number of times it has been clicked by changing the state variable count. Notice
that the logging to the console continues. Again, this is because all the code on this page runs
every time this component is rendered. By putting that code in a useEffect hook, we can
limit it to run only when the on variable changes.

6. There is another issue with this component. To see it, turn the light on so that the background
color changes to orange. Then click the Home link. Notice that the background color stays
orange and the title still says “Light is on!”. We would like to set the background color back
to white when the component “unmounts.”

❋

8.3. useEffect to the Rescue

In our last demo, we saw two problems:

1. Code that we only wanted to run on some changes of state was running on every change of
state.

146 | LESSON 8: React Effects

EVALUATION COPY: Not to be used in class.

2. Changes that affected the entire app (the change in background color) didn’t get cleaned up
when the component unmounted.

The following demo will use a useEffect hook to address both those issues:

Demo 8.2: React/demo-viewer/src/Demos/effect-hook/LightBulb2.js

import React, {useState, useEffect} from 'react';1.
import ToggleButton from './ToggleButton';2.

3.
function LightBulb2() {4.

5.
const [on, setOn] = useState(true);6.
const [count, setCount] = useState(0);7.

8.
useEffect(() => {9.
const originalTitle = document.title;10.
document.title = on ? 'Light is on!' : 'Light is off!';11.
document.body.style.backgroundColor = on ? 'orange' : 'white';12.
console.log('Changing title and background color.');13.
return () => {14.
document.body.style.backgroundColor = 'white';15.
document.title = originalTitle;16.

}17.
}, [on]);18.

19.
return (20.
<div className="container">21.
<ToggleButton on={on} setOn={setOn} />22.
<button className="btn btn-primary" onClick={() => {23.
setCount(count + 1);24.

}}>{count}</button>25.
</div>26.

)27.
}28.
export default LightBulb2;29.

Code Explanation

1. First, clear the console. Then, on the demo-viewer home page, click the LightBulb2 link
under useEffect. This looks exactly like the last demo, but it’s not!

2. Click the Turn On / Turn Off button a few times. Just like before, it changes the title in the
tab and the background color, and it logs to the console.

LESSON 8: React Effects | 147

3. Click the count button several times. Notice that it does not log to the console. That’s good.
That button doesn’t change the title or background color, so it shouldn’t log that it does.

4. Turn the light on so that the background color is orange, and then click the Home link.
Notice that the background color reverts to white and the title reverts to “React Demo Viewer”.
This is good too.

We have fixed the issues by importing useEffect:

import React, {useState, useEffect} from 'react';

And then moving the code that should respond to changes in the value of on into a useEffect hook:

useEffect(() => {
const originalTitle = document.title;
document.title = on ? 'Light is on!' : 'Light is off!';
document.body.style.backgroundColor = on ? 'orange' : 'white';
console.log('Changing title and background color.');
return () => {
document.body.style.backgroundColor = 'white';
document.title = originalTitle;

}
}, [on]);

Notice that the useEffect() function takes two arguments:

1. A callback function:

() => {
const originalTitle = document.title;
document.title = on ? 'Light is on!' : 'Light is off!';
document.body.style.backgroundColor = on ? 'orange' : 'white';
console.log('Changing title and background color.');
return () => {
document.body.style.backgroundColor = 'white';
document.title = originalTitle;

}
}

148 | LESSON 8: React Effects

EVALUATION COPY: Not to be used in class.

2. An array of dependencies:

[on]

The callback function will only run when one of the variables in the dependencies array changes.

Notice that the callback function returns another function:

return () => {
document.body.style.backgroundColor = 'white';
document.title = originalTitle;

}

This returned function is often called the “cleanup” function, because it runs when the component
unmounts. In our case, we are using it to set the background color back to white and the title back to
the original title.

❋

8.4. Mount and Unmount

When you have code that should only execute when the component is mounted (i.e., first loaded), put
it in a useEffect hook with an empty dependencies array, like this:

useEffect(() => {
// only run on mounting

}, []);

To add code that should run when the component unmounts, add a return statement to the callback
function in the useEffect:

useEffect(() => {
// only run on mounting
return () => {
// only run on unmounting

}
}, []);

LESSON 8: React Effects | 149

In the next demo, we have added a useEffect function to our LightBulb component to set the title
when the component mounts and set it back to the original title when the component unmounts. This
is a common thing to do in a React application, so the title reflects where the user is in the app.

Demo 8.3: React/demo-viewer/src/Demos/effect-hook/LightBulb3.js

import React, {useState, useEffect} from 'react';1.
import ToggleButton from './ToggleButton';2.

3.
function LightBulb3() {4.

5.
const [on, setOn] = useState(true);6.
const [count, setCount] = useState(0);7.

8.
useEffect(() => {9.
const originalTitle = document.title;10.
return () => {11.
document.title = originalTitle;12.

}13.
}, []);14.

15.
useEffect(() => {16.
document.title = on ? 'Light is on!' : 'Light is off!';17.
document.body.style.backgroundColor = on ? 'orange' : 'white';18.
console.log('Changing title and background color.');19.
return () => {20.
document.body.style.backgroundColor = 'white';21.

}22.
}, [on]);23.

24.
return (25.
<div className="container">26.
<ToggleButton on={on} setOn={setOn} />27.
<button className="btn btn-primary" onClick={() => {28.
setCount(count + 1);29.

}}>{count}</button>30.
</div>31.

)32.
}33.
export default LightBulb3;34.

You might also use a useEffect function with an empty dependencies array to fetch data from a data
feed when the component mounts and then clean up that data when the component unmounts.

❋

150 | LESSON 8: React Effects

EVALUATION COPY: Not to be used in class.

8.5. Passing Functions to State Variable Setters

The usual way to change a state variable is to pass its setter a new value. For example, imagine you have
a state variable named on:

const [on, setOn] = useState(true);

You can change its value like this:

setOn(false);

You could also reference the variable itself when making the change:

setOn(!on);

This will result in toggling the value of on between true and false.

Take a look at the following demo:

LESSON 8: React Effects | 151

Demo 8.4: React/demo-viewer/src/Demos/effect-hook/LightBulb4.js

import React, {useState, useEffect} from 'react';1.
2.

function LightBulb4() {3.
4.

const [on, setOn] = useState(true);5.
6.

document.body.style.backgroundColor = on ? 'orange' : 'white';7.
8.

useEffect(() => {9.
window.addEventListener('click', () => {10.
setOn(!on);11.

})12.
}, []);13.

14.
return (15.
<div className="container">16.
{on ? 'Light is on!' : 'Light is off!'}17.

</div>18.
)19.

}20.
export default LightBulb4;21.

Code Explanation

1. Open the demo-viewer app in the browser and click the LightBulb4 link below useEffect.

2. Click anywhere on the page. Notice the light turns off.

3. Click anywhere on the page again. Nothing happens. The reason nothing happens is that the
code that creates the event listener only runs when the LightBulb4 component mounts. At
that point the value of on is true. Because the useEffect() function doesn’t run on each
re-rendering, it doesn’t realize the value of on is changing.

4. You will also note that you get a warning about a missing dependency: ‘on’. You might be
tempted to add on to the dependency array like this:

useEffect(() => {
window.addEventListener('click', () => {
setOn(!on);

})
}, [on]);

152 | LESSON 8: React Effects

EVALUATION COPY: Not to be used in class.

But if you do that, a new event listener will be added with every mouse click. It might work,
but after a lot of mouse clicks, you might find your app slowing down a bit.

5. The correct solution is to pass a function to the setOn() setter, like this:

useEffect(() => {
window.addEventListener('click', () => {
setOn((prevOn) => {
return !prevOn;

})
})

}, []);

When you pass a function to a state variable setter, the current value of the state variable is
automatically passed to that function as an argument. The common practice is to call that
parameter prevVarName. For example, if the state variable name is on, the name of the
function parameter would be prevOn. But this is just by convention. Technically, you can
call it whatever you like.

6. JavaScript provides a shortcut way of returning a value from a function when the function
body only has a return statement:

setOn((prevOn) => !prevOn);

And because this function only takes one argument, JavaScript allows you to remove the
parentheses around the argument:

setOn(prevOn => !prevOn);

This is a common syntax in React. Another example is incrementing a state variable by 1:

setCount(prevCount => prevCount + 1);

We will use this technique in the next exercise.

LESSON 8: React Effects | 153

 Exercise 18: Fixing the Timer
 20 to 30 minutes

You’ll remember that moving from the Mathificent Game screen to the Time’s Up! screen was
sometimes a little glitchy. That’s because the Timeout set in the Timer component is still active when
the component unmounts. We need to make sure that gets cleaned up when the Timer component
unmounts.

Let’s take a look at the Timer component as it now stands:

Exercise Code 18.1: React/Solutions/implementing/Timer.js

import React from 'react';1.
2.

function Timer(props) {3.
4.

if (props.timeLeft > 0) {5.
setTimeout(() => {6.
props.setTimeLeft(props.timeLeft - 1);7.

}, 1000)8.
};9.

10.
return (11.
Time: {props.timeLeft}12.

)13.
}14.

15.
export default Timer;16.

1. Start up the Mathificent app from your Exercises/mathificent folder.

2. Change the gameLength in the Game component to 5, so that games finish quickly.

3. Looking back at the Timer component, let’s review how it works:

A. When the component mounts, it checks if props.timeLeft is greater than 0. If it
is, it sets a Timeout to decrement props.timeLeft by 1 in 1000 milliseconds.

B. When 1000 milliseconds passes, the props.timeLeft will change, which will cause
the component to re-render. This will result in a new Timeout being set to decrement
props.timeLeft by 1 again.

154 | LESSON 8: React Effects

EVALUATION COPY: Not to be used in class.

C. This cycle will continue until props.timeLeft is equal to 0, at which point the
Game component will show the Times Up! screen causing the Timer component to
unmount.

4. Now, lets consider how we would like this to work:

A. When the component mounts, instead of setting a Timeout, set an Interval using
setInterval() to decrement props.timeLeft every 1000 milliseconds. Make
sure this Interval only gets set when the Timer component originally mounts, so that
we’re not creating new Intervals every time the component re-renders.

B. When the component unmounts, clear the Interval using clearInterval().

5. Open the Timer component in your editor.

6. Import the useEffect hook:

import React, {useEffect} from 'react';

7. Destructure the props parameter so that we can reference the variables without the props
prefix:

function Timer({timeLeft, setTimeLeft}) {

8. Replace the if condition and the contained setTimeout() code with this:

useEffect(() => {
const timer = setInterval(() => {

setTimeLeft(prevTimeLeft => prevTimeLeft - 1);
}, 1000);

return () => {
clearInterval(timer); //cleanup

}
}, []);

Because the dependencies array is empty, this code will only run when the Timer mounts,
which will cause timeLeft to be decremented by 1 every 1000 milliseconds. The returned
function, which clears the interval, will run immediately before the Timer unmounts, which
will remove the glitchiness we saw before when switching between the Times Up! screen and
the Game screen.

9. Note that you may get a warning saying that there is a missing dependency. This is because
the linter (i.e., the tool that analyzes the code to see if there are any problems) thinks that the

LESSON 8: React Effects | 155

value of setTimeLeft could change. But setTimeLeft is a function and will not change,
so you don’t need to worry about this. You can make the warning go away by adding this
comment right after the return statement in the useEffect function:

// eslint-disable-next-line react-hooks/exhaustive-deps

156 | LESSON 8: React Effects

EVALUATION COPY: Not to be used in class.

LESSON 8: React Effects | 157

Solution: React/Solutions/effect-hook/Timer.js

import React, {useEffect} from 'react';1.
2.

function Timer({timeLeft, setTimeLeft}) {3.
4.

useEffect(() => {5.
const timer = setInterval(() => {6.

setTimeLeft(prevTimeLeft => prevTimeLeft - 1);7.
}, 1000);8.
console.log('Starting timer.');9.

return () => {10.
clearInterval(timer); //cleanup11.
console.log('Cleaning up.');12.

}13.
// eslint-disable-next-line react-hooks/exhaustive-deps14.

}, []);15.
16.

return (17.
Time: {timeLeft}18.

)19.
}20.
export default Timer;21.

Code Explanation

Note that we’ve added some logging to the console just for demonstration purposes. You do not need
to include that.

158 | LESSON 8: React Effects

EVALUATION COPY: Not to be used in class.

 Exercise 19: Catching Keyboard Events
 10 to 20 minutes

To finish up our Mathificent app, we will add a component that allows the user to answer using the
keyboard. This component is already created for you and shown below:

Exercise Code 19.1: React/Solutions/effect-hook/Keyboard.js

import {useEffect} from 'react';1.
2.

function Keyboard({setUserAnswer}) {3.
4.

useEffect(() => {5.
const handleKeyUp = (e) => {6.
e.preventDefault(); // prevent the normal behavior of the key7.
if (e.keyCode === 32 || e.keyCode === 13) { // space/Enter8.
setUserAnswer('');9.

} else if (e.keyCode === 8) { // backspace10.
setUserAnswer(prevUserAnswer =>11.
prevUserAnswer.substring(0, prevUserAnswer.length - 1));12.

} else if (!isNaN(e.key)) {13.
// Number() will remove leading zeroes14.
setUserAnswer(prevUserAnswer =>15.
String(Number(prevUserAnswer + e.key)));16.

}17.
}18.
window.addEventListener('keyup', handleKeyUp);19.
return () => {20.
window.removeEventListener('keyup', handleKeyUp); //cleanup21.

}22.
// eslint-disable-next-line react-hooks/exhaustive-deps23.

}, []); // No dependencies. Will only run on mounting24.
25.

return null; // This component doesn't output anything26.
}27.
export default Keyboard;28.

Code Explanation

You should be able to understand this code. The only new React-related bit is that the component
doesn’t output anything. We use return null to indicate that.

LESSON 8: React Effects | 159

1. If it’s not already running, start up the Mathificent app from your Exercises/mathificent
folder.

2. Copy Keyboard.js from React/Solutions/effect-hook/Keyboard.js and paste it in
the Exercises/mathificent/src/components/ folder.

3. Open the Game component in your editor and import the Keyboard component:

import Keyboard from './Keyboard';

4. Add the Keyboard tag to your main return statement in the Game component. Be sure to
pass in setUserAnswer as an attribute:

<main className="text-center" id="game-container">
<div className="row border-bottom" style={{fontSize: "1.5em"}}>
<div className="col px-3 text-left">
<Score score={score} />

</div>
<div className="col px-3 text-right">
<Timer timeLeft={timeLeft} setTimeLeft={setTimeLeft} />

</div>
</div>
<div className={equationClass} id="equation">
<Equation question={question} answer={userAnswer} />

</div>
<div className="row" id="buttons">
<div className="col">
{numberButtons}
<ClearButton handleClick={setUserAnswer} />

</div>
</div>
<Keyboard setUserAnswer={setUserAnswer} />

</main>

5. Test this out by starting a game. You should be able to use your keyboard to answer questions.
The spacebar and Enter keys should work like the Clear button, and the Backspace key
should work to delete the last character added.

❋

160 | LESSON 8: React Effects

EVALUATION COPY: Not to be used in class.

8.6. Building and Deploying Your React App

The final phase in making any kind of software is called “deployment.” During this last phase, the
following things typically happen:

1. Source code files are compiled from separate modules into one file or bundle.

2. Code and formatting that’s necessary during the development phase but not needed by the
end user (such as testing and debugging code and code comments) is removed.

3. Whitespace (spaces, tabs, and line breaks) are removed from the files (this is called
“minification”).

4. A distribution file or directory is created. This is the end product of software development.

A compiled React application (also known as a “production build”) uses a special, smaller version of
the React library. This version doesn’t contain the debugging and testing code that the full version of
React has. Instead, it’s optimized just for making your React application as fast as posssible when
someone visits.

Building your React application is very easy if you started with Create React App. All you need to do
is to run npm run build in your terminal window. Create React App will then automatically go
through a process of testing and compiling your application. At the end of the process, you’ll have a
new directory named build in your Create React App project directory. This is your production build.
Feel free to zip it up and send it to a friend. They should be able to unzip and run the application using
npm start as long as they have Node on their computer.

Conclusion

In this lesson, you have learned to use useEffect hooks to control when code runs in a component.

LESSON 8: React Effects | 161

	Introduction to React
	What is React?
	React Essentials
	Exercise 1: Get Started with Create React App
	Introducing Our Project: Mathificent
	Exercise 2: Learning the Structure of a React App

	JSX and React Elements
	Using JSX in React
	JSX Rules
	Exercise 3: Using JSX

	React Components
	Assembling User Interfaces
	Exercise 4: Breaking an App into Components
	Exercise 5: Passing Props Between Components
	Exercise 6: Organizing Your Components
	Semantic HTML and the Fragment Element
	Exercise 7: Using Fragment
	Destructuring props

	React State
	Understanding State
	Getting React to React
	Why is count a Constant?
	Child Components and State
	Exercise 8: Adding State

	React Routing
	Routing
	Exercise 9: Implementing Routes

	Styling React Apps
	Plain-old CSS
	Importing CSS Modules to Components
	Exercise 10: Cleaning Up App.css
	Exercise 11: Styling the Main Component
	Exercise 12: Improving the Operation Dropdown
	Inline Styles
	Exercise 13: Creating the Game Component
	A Word of Caution

	Implementing Game Logic
	Exercise 14: Setting the Equation
	Exercise 15: Getting the User’s Answer
	Exercise 16: Checking the User’s Answer
	Exercise 17: Creating the Timer

	React Effects
	React Hooks
	The useEffect Hook
	useEffect to the Rescue
	Mount and Unmount
	Passing Functions to State Variable Setters
	Exercise 18: Fixing the Timer
	Exercise 19: Catching Keyboard Events
	Building and Deploying Your React App

