
Advanced Python 3
Training

with examples and
hands-on exercises

WEBUCATOR

Copyright © 2023 by Webucator. All rights reserved.

No part of this manual may be reproduced or used in any manner without written permission of the
copyright owner.

Version: 1.2.4

The Authors

Nat Dunn

Nat Dunn is the founder of Webucator (www.webucator.com), a company that has provided training
for tens of thousands of students from thousands of organizations. Nat started the company in 2003
to combine his passion for technical training with his business expertise, and to help companies benefit
from both. His previous experience was in sales, business and technical training, and management. Nat
has an MBA from Harvard Business School and a BA in International Relations from Pomona College.

Follow Nat on Twitter at @natdunn and Webucator at @webucator.

Stephen Withrow (Editor)

Stephen has over 30 years of experience in training, development, and consulting in a variety of
technology areas including Python, Java, C, C++, XML, JavaScript, Tomcat, JBoss, Oracle, and DB2.
His background includes design and implementation of business solutions on client/server, Web, and
enterprise platforms. Stephen has a degree in Computer Science and Physics from Florida State
University.

Class Files

Download the class files used in this manual at
https://static.webucator.com/media/public/materials/classfiles/PYT238-1.2.4.zip.

Errata

Corrections to errors in the manual can be found at https://www.webucator.com/books/errata/.

Acknowledgments

EVALUATION COPY: Not to be used in class.

A huge thanks to the phenomenal trainers who have taught Python using variations of this material
for Webucator over the years: Stephen Withrow, Roger Sakowski, Mark Copley, Jared Dunn, and
others.

And one final thanks to all the hard work the Python team does. You can join Webucator in supporting
them at https://www.python.org/psf/sponsorship/sponsors/.

https://static.webucator.com/media/public/materials/classfiles/PYT238-1.2.4.zip
https://www.webucator.com/books/errata/
https://www.python.org/psf/sponsorship/sponsors/

Table of Contents

LESSON 1. Advanced Python Concepts...1
Lambda Functions..1
Advanced List Comprehensions..2

Exercise 1: Rolling Five Dice...7
Collections Module...8

Exercise 2: Creating a defaultdict...15
Counters...20

Exercise 3: Creating a Counter...24
Mapping and Filtering..26
Mutable and Immutable Built-in Objects...31
Sorting..34

Exercise 4: Converting list.sort() to sorted(iterable)...37
Sorting Sequences of Sequences..41
Creating a Dictionary from Two Sequences..44
Unpacking Sequences in Function Calls...45

Exercise 5: Converting a String to a datetime.date Object..47
Modules and Packages...48

LESSON 2. Regular Expressions...53
Regular Expression Tester...53
Regular Expression Syntax..55
Python’s Handling of Regular Expressions..59

Exercise 6: Green Glass Door...67

Table of Contents | i

LESSON 3. Working with Data...71
Virtual Environment...71
Relational Databases..72
Passing Parameters...80
SQLite...83

Exercise 7: Querying a SQLite Database...87
SQLite Database in Memory...88

Exercise 8: Inserting File Data into a Database...91
Drivers for Other Databases...95
CSV...95

Exercise 9: Finding Data in a CSV File...101
Creating a New CSV File..102

Exercise 10: Creating a CSV with DictWriter...107
Getting Data from the Web..109

Exercise 11: HTML Scraping...118
XML...122
JSON...124

Exercise 12: JSON Home Runs..128
LESSON 4. Testing and Debugging...131

Testing for Performance...131
Exercise 13: Comparing Times to Execute..140

The unittest Module...143
Exercise 14: Fixing Functions...150

Special unittest.TestCase Methods...152

ii | Table of Contents

LESSON 5. Classes and Objects...155
Attributes..155
Behaviors..156
Classes vs. Objects..157
Attributes and Methods...160

Exercise 15: Adding a roll() Method to Die...167
Private Attributes...169
Properties...171

Exercise 16: Properties..176
Objects that Track their Own History...178
Documenting Classes..180

Exercise 17: Documenting the Die Class...187
Inheritance...188

Exercise 18: Extending the Die Class..192
Extending a Class Method..194

Exercise 19: Extending the roll() Method...198
Static Methods...200
Class Attributes and Methods..203
Abstract Classes and Methods...208
Understanding Decorators...215

Table of Contents | iii

LESSON 1
Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

Topics Covered

 Lambda functions.

 Advanced list comprehensions.

 The collections module.

 Mapping and filtering.

 Sorting sequences.

 Unpacking sequences in function calls.

 Modules and packages.

Introduction

In this lesson, you will learn about some Python functionality and techniques that are commonly used
but require a solid foundation in Python to understand.

EVALUATION COPY: Not to be used in class.

❋

1.1. Lambda Functions

Lambda functions are anonymous functions that are generally used to complete a small task, after
which they are no longer needed. The syntax for creating a lambda function is:

LESSON 1: Advanced Python Concepts | 1

EVALUATION COPY: Not to be used in class.

lambda arguments: expression

Lambda functions are almost always used within other functions, but for demonstration purposes, we
could assign a lambda function to a variable, like this:

f = lambda n: n**2

We could then call f like this:

f(5) # Returns 25
f(2) # Returns 4

Try it at the Python terminal:

>>> f = lambda n: n**2
>>> f(5)
25
>>> f(2)
4

We will revisit lambda functions throughout this lesson.

EVALUATION COPY: Not to be used in class.

❋

1.2. Advanced List Comprehensions

 1.2.1. Quick Review of Basic List Comprehensions

Before we get into advanced list comprehensions, let’s do a quick review. The basic syntax for a list
comprehension is:

my_list = [f(x) for x in iterable if condition]

In the preceding code f(x) could be any of the following:

2 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

1. Just a variable name (e.g., x).

2. An operation (e.g., x**2).

3. A function call (e.g., len(x) or square(x)).

Here is an example from earlier, in which we create a list by filtering another list:

Demo 1.1: advanced-python-concepts/Demos/sublist_from_list.py

def main():1.
words = ['Woodstock', 'Gary', 'Tucker', 'Gopher', 'Spike', 'Ed',2.

'Faline', 'Willy', 'Rex', 'Rhino', 'Roo', 'Littlefoot',3.
'Bagheera', 'Remy', 'Pongo', 'Kaa', 'Rudolph', 'Banzai',4.
'Courage', 'Nemo', 'Nala', 'Alvin', 'Sebastian', 'Iago']5.

three_letter_words = [w for w in words if len(w) == 3]6.
print(three_letter_words)7.

8.
main()9.

This will return:

['Rex', 'Roo', 'Kaa']

And here is a new example, in which we map all the elements in one list to another using a function:

Demo 1.2: advanced-python-concepts/Demos/list_comp_mapping.py

def get_inits(name):1.
Create list from first letter of each name part2.
inits = [name_part[0] for name_part in name.split()]3.
Join inits list on "." and append "." to end4.
return '.'.join(inits) + '.'5.

6.
def main():7.

people = ['George Washington', 'John Adams',8.
'Thomas Jefferson', 'John Quincy Adams']9.

10.
Create list by mapping person elements to get_inits()11.
inits = [get_inits(person) for person in people]12.
print(inits)13.

14.
main()15.

LESSON 1: Advanced Python Concepts | 3

EVALUATION COPY: Not to be used in class.

This will return:

['G.W.', 'J.A.', 'T.J.', 'J.Q.A.']

Now, on to the more advanced uses of list comprehension.

 1.2.2. Multiple for Loops

Assume that you need to create a list of tuples showing the possible permutations of rolling two six-sided
dice. When dealing with permutations, order matters, so (1, 2) and (2, 1) are not the same. First, let’s
look at how we would do this without a list comprehension, using a nested for loop:

Demo 1.3: advanced-python-concepts/Demos/dice_rolls.py

def main():1.
dice_rolls = []2.
for a in range(1, 7):3.

for b in range(1, 7):4.
roll = (a, b)5.
dice_rolls.append(roll)6.

7.
print(dice_rolls)8.

9.
main()10.

This will return:

[(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)]

List comprehensions can include multiple for loops with each subsequent loop nested within the
previous loop. This provides an easy way to create something similar to a two-dimensional array or a
matrix:

4 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

Demo 1.4: advanced-python-concepts/Demos/dice_rolls_list_comp.py

def main():1.
dice_rolls = [2.

(a, b)3.
for a in range(1, 7)4.
for b in range(1, 7)5.

]6.
7.

print(dice_rolls)8.
9.

main()10.

This code will create the same list of tuples containing all the possible permutations of two dice rolls.

Notice that the list of permutations contains what game players would consider duplicates. For example,
(1, 2) and (2, 1) are considered the same in dice. We can remove these pseudo-duplicates by starting
the second for loop with the current value of a in the first for loop. Let’s do this first without a list
comprehension:

Demo 1.5: advanced-python-concepts/Demos/dice_combos.py

def main():1.
dice_rolls = []2.
for a in range(1, 7):3.

for b in range(a, 7):4.
roll = (a, b)5.
dice_rolls.append(roll)6.

7.
print(dice_rolls)8.

9.
main()10.

The first time through the outer loop, the inner loop from 1 to 7 (not including 7), the second time
through, it will loop from 2 to 7, then 3 to 7, and so on…

The dice_rolls list will now contain the different possible rolls (from a dice rolling point of view):

LESSON 1: Advanced Python Concepts | 5

EVALUATION COPY: Not to be used in class.

[(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 3), (3, 4), (3, 5), (3, 6),
(4, 4), (4, 5), (4, 6),
(5, 5), (5, 6),
(6, 6)]

Where we previously showed permutations, in which order matters, we are now showing combinations,
in which order does not matter. The following two tuples represent different permutations, but the
same combination: (1, 2) and (2, 1).

Now, let’s see how we can do the same thing with a list comprehension:

Demo 1.6: advanced-python-concepts/Demos/dice_combos_list_comp.py

def main():1.
dice_rolls = [2.

(a, b)3.
for a in range(1, 7)4.
for b in range(a, 7)5.

]6.
7.

print(dice_rolls)8.
9.

main()10.

This code will create the same list of tuples containing all the possible combinations of two dice rolls.

6 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

 Exercise 1: Rolling Five Dice
 10 to 15 minutes

There is no limit to the number of for loops in a list comprehension, so we can use this same technique
to get the possibilities for more than two dice.

1. Create a new file in advanced-python-concepts/Exercises named list_comprehen
sions.py.

2. Write two separate list comprehensions:

A. The first should create five-item tuples for all unique permutations from rolling five
identical six-sided dice. Remember, when looking for permutations, order matters.

B. The second should create five-item tuples for all unique combinations from rolling
five identical six-sided dice. Remember, when looking for combinations, order doesn’t
matter.

3. Print the length of each list.

LESSON 1: Advanced Python Concepts | 7

EVALUATION COPY: Not to be used in class.

Solution: advanced-python-concepts/Solutions/list_comprehensions.py

Get unique permutations:1.
dice_rolls_p = [(a, b, c, d, e)2.

for a in range(1, 7)3.
for b in range(1, 7)4.
for c in range(1, 7)5.
for d in range(1, 7)6.
for e in range(1, 7)]7.

8.
print('Number of permutations:', len(dice_rolls_p))9.

10.
Get unique combinations:11.
dice_rolls_c = [(a, b, c, d, e)12.

for a in range(1,7)13.
for b in range(a, 7)14.
for c in range(b, 7)15.
for d in range(c, 7)16.
for e in range(d, 7)]17.

18.
print('Number of combinations:', len(dice_rolls_c))19.

This file will output:

Number of permutations: 7776
Number of combinations: 252

EVALUATION COPY: Not to be used in class.

❋

1.3. Collections Module

The collections module includes specialized containers (objects that hold data) that provide more
specific functionality than Python’s built-in containers (list, tuple, dict, and set). Some of the
more useful containers are named tuples (created with the namedtuple() function), defaultdict,
and Counter.

8 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

 1.3.1. Named Tuples

Imagine you are creating a game in which you need to set and get the position of a target. You could
do this with a regular tuple like this:

Set target position:
target_pos = (100, 200)

Get x value of target position
target_pos[0] # 100

But someone reading your code might not understand what target_pos[0] refers to.

A named tuple allows you to reference target_pos.x, which is more meaningful and helpful. Here
is a simplified signature for creating namedtuple objects:

namedtuple(typename, field_names)

1. typename – The value passed in for typename will be the name of a new tuple subclass. It is
standard for the name of the new subclass to begin with a capital letter. We have not yet
covered classes and subclasses yet. For now, it is enough to know that the new tuple subclass
created by namedtuple() will inherit all the properties of a tuple, and also make it possible
to refer to elements of the tuple by name.

2. field_names – The value for field_names can either be a whitespace-delimited string (e.g.,
'x y'), a comma-delimited string (e.g., 'x, y'), or a sequence of strings (e.g., ['x', 'y']).

Demo 1.7: advanced-python-concepts/Demos/namedtuple.py

from collections import namedtuple1.
2.

Point = namedtuple('Point', 'x, y')3.
4.

Set target position:5.
target_pos = Point(100, 200)6.

7.
Get x value of target position8.
print(target_pos.x)9.

As the preceding code shows, the namedtuple() function allows you to give a name to the elements
at different positions in a tuple and then refer to them by that name.

LESSON 1: Advanced Python Concepts | 9

EVALUATION COPY: Not to be used in class.

 1.3.2. Default Dictionaries (defaultdict)

With regular dictionaries, trying to modify a key that doesn’t exist will cause an exception. For example,
the following code will result in a KeyError:

foo = {}
foo['bar'] += 1

A defaultdict is like a regular dictionary except that, when you look up a key that doesn’t exist, it
creates the key and assigns it the value returned by a function specified when creating it.

To illustrate how a defaultdict can be useful, let’s see how we would create a regular dictionary that
shows the number of different ways each number (2 through 12) can be rolled when rolling two dice,
like this:

{
2: 1,
3: 2,
4: 3,
5: 4,
6: 5,
7: 6,
8: 5,
9: 4,
10: 3,
11: 2,
12: 1

}

There is only one way to roll a 2: (1, 1).

There are two ways to roll a 3: (1, 2) and (2, 1).

There are five ways to roll a 6: (1, 5), (2, 4), (3, 3), (4, 2), and (5, 1).

1. First, create the list of possibilities as we did earlier:

dice_rolls = [
(a, b)
for a in range(1, 7)
for b in range(1, 7)

]

10 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

2. Next, create an empty dictionary, roll_counts, and then loop through the dice_rolls list
checking for the existence of a key that is the sum of the dice roll. For example, on the first
iteration, we find (1, 1), which when added together, gives us 2. Since roll_counts does
not have a key 2, we need to add that key and set its value to 1. The same is true for when we
find (1, 2), which adds up to 3. But later when we find (2, 1), which also adds up to 3,
we don’t need to recreate the key. Instead, we increment the existing key’s value by 1. The
code looks like this:

roll_counts = {}
for roll in dice_rolls:

if sum(roll) in roll_counts:
roll_counts[sum(roll)] += 1

else:
roll_counts[sum(roll)] = 1

This method works fine and gives us the following roll_counts dictionary that we looked at earlier:

{
2: 1,
3: 2,
4: 3,
5: 4,
6: 5,
7: 6,
8: 5,
9: 4,
10: 3,
11: 2,
12: 1

}

An alternative to using conditionals to make sure the key exists is to just go ahead and try to increment
the value of each potential key we find and then, if we get a KeyError, assign 1 for that key, like this:

roll_counts = {}
for roll in dice_rolls:

try:
roll_counts[sum(roll)] += 1

except KeyError:
roll_counts[sum(roll)] = 1

LESSON 1: Advanced Python Concepts | 11

EVALUATION COPY: Not to be used in class.

This also works and produced the same dictionary.

But with a defaultdict, we don’t need the if-else block or the try-except block. The code looks
like this:

from collections import defaultdict

roll_counts = defaultdict(int)
for roll in dice_rolls:

roll_counts[sum(roll)] += 1

The result is a defaultdict object that can be treated just like a normal dictionary:

defaultdict(<class 'int'>, {
2: 1,
3: 2,
4: 3,
5: 4,
6: 5,
7: 6,
8: 5,
9: 4,
10: 3,
11: 2,
12: 1

})

Here are the three methods again:

Demo 1.8: advanced-python-concepts/Demos/dict_if_else.py

-------Lines 1 through 4 Omitted-------
roll_counts = {}5.
for roll in dice_rolls:6.

if sum(roll) in roll_counts:7.
roll_counts[sum(roll)] += 18.

else:9.
roll_counts[sum(roll)] = 110.

12 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

Demo 1.9: advanced-python-concepts/Demos/dict_try_except.py

-------Lines 1 through 4 Omitted-------
roll_counts = {}5.
for roll in dice_rolls:6.

try:7.
roll_counts[sum(roll)] += 18.

except KeyError:9.
roll_counts[sum(roll)] = 110.

Demo 1.10: advanced-python-concepts/Demos/defaultdict.py

from collections import defaultdict1.
-------Lines 2 through 6 Omitted-------
roll_counts = defaultdict(int)7.
for roll in dice_rolls:8.

roll_counts[sum(roll)] += 19.

Notice in the preceding code that we passed int to defaultdict():

roll_counts = defaultdict(int)

Remember, when you try to look up a key that doesn’t exist in a defaultdict, it creates the key and
assigns it the value returned by a function you specified when creating it. In this case, that function is
int().

When passing the function to defaultdict(), you do not include parentheses, because you are not
calling the function at the time you pass it to defaultdict(). Rather, you are specifying that you
want to use this function to give you default values for new keys. By passing int, we are stating that
we want new keys to have a default value of whatever int() returns when no argument is passed to
it. That value is 0:

>>> int()
0

You can create default dictionaries with any number of functions, both built-in and user-defined:

LESSON 1: Advanced Python Concepts | 13

EVALUATION COPY: Not to be used in class.

defaultdict with Built-in Functions

a = defaultdict(list) # Default key value will be []
b = defaultdict(str) # Default key value will be ''

defaultdict with lambda Function

c = defaultdict(lambda: 5) # Default key value will be 5
c['a'] += 1 # c['a'] will contain 6

defaultdict with User-defined Function

def foo():
return 'bar'

d = defaultdict(foo) # Default key value will be 'bar'
d['a'] = d['a'].upper() # d['a'] will contain 'BAR'

14 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

 Exercise 2: Creating a defaultdict
 15 to 25 minutes

In this exercise, you will organize the 1927 New York Yankees by position by creating a default dictionary
that looks like this:

defaultdict(<class 'list'>,
{

'OF': ['Earle Combs', 'Cedric Durst', 'Bob Meusel',
'Ben Paschal', 'Babe Ruth'],

'C': ['Benny Bengough', 'Pat Collins', 'Johnny Grabowski'],
'2B': ['Tony Lazzeri', 'Ray Morehart'],
'SS': ['Mark Koenig'],
'3B': ['Joe Dugan', 'Mike Gazella', 'Julie Wera'],
'P': ['Walter Beall', 'Joe Giard', 'Waite Hoyt',

'Wilcy Moore', 'Herb Pennock', 'George Pipgras',
'Dutch Ruether', 'Bob Shawkey', 'Urban Shocker',
'Myles Thomas'],

'1B': ['Lou Gehrig']
})

You will start with this list of dictionaries:

LESSON 1: Advanced Python Concepts | 15

EVALUATION COPY: Not to be used in class.

yankees_1927 = [
{'position': 'P', 'name': 'Walter Beall'},
{'position': 'C', 'name': 'Benny Bengough'},
{'position': 'C', 'name': 'Pat Collins'},
{'position': 'OF', 'name': 'Earle Combs'},
{'position': '3B', 'name': 'Joe Dugan'},
{'position': 'OF', 'name': 'Cedric Durst'},
{'position': '3B', 'name': 'Mike Gazella'},
{'position': '1B', 'name': 'Lou Gehrig'},
{'position': 'P', 'name': 'Joe Giard'},
{'position': 'C', 'name': 'Johnny Grabowski'},
{'position': 'P', 'name': 'Waite Hoyt'},
{'position': 'SS', 'name': 'Mark Koenig'},
{'position': '2B', 'name': 'Tony Lazzeri'},
{'position': 'OF', 'name': 'Bob Meusel'},
{'position': 'P', 'name': 'Wilcy Moore'},
{'position': '2B', 'name': 'Ray Morehart'},
{'position': 'OF', 'name': 'Ben Paschal'},
{'position': 'P', 'name': 'Herb Pennock'},
{'position': 'P', 'name': 'George Pipgras'},
{'position': 'P', 'name': 'Dutch Ruether'},
{'position': 'OF', 'name': 'Babe Ruth'},
{'position': 'P', 'name': 'Bob Shawkey'},
{'position': 'P', 'name': 'Urban Shocker'},
{'position': 'P', 'name': 'Myles Thomas'},
{'position': '3B', 'name': 'Julie Wera'}

]

1. Open advanced-python-concepts/Exercises/defaultdict.py in your editor.

2. Write code so that the script creates the defaultdict above from the given list.

3. Output the pitchers stored in your new defaultdict.

16 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

LESSON 1: Advanced Python Concepts | 17

EVALUATION COPY: Not to be used in class.

Solution: advanced-python-concepts/Solutions/defaultdict.py

from collections import defaultdict1.
2.

yankees_1927 = [3.
{'position': 'P', 'name': 'Walter Beall'},4.
{'position': 'C', 'name': 'Benny Bengough'},5.
{'position': 'C', 'name': 'Pat Collins'},6.
{'position': 'OF', 'name': 'Earle Combs'},7.
{'position': '3B', 'name': 'Joe Dugan'},8.
{'position': 'OF', 'name': 'Cedric Durst'},9.
{'position': '3B', 'name': 'Mike Gazella'},10.
{'position': '1B', 'name': 'Lou Gehrig'},11.
{'position': 'P', 'name': 'Joe Giard'},12.
{'position': 'C', 'name': 'Johnny Grabowski'},13.
{'position': 'P', 'name': 'Waite Hoyt'},14.
{'position': 'SS', 'name': 'Mark Koenig'},15.
{'position': '2B', 'name': 'Tony Lazzeri'},16.
{'position': 'OF', 'name': 'Bob Meusel'},17.
{'position': 'P', 'name': 'Wilcy Moore'},18.
{'position': '2B', 'name': 'Ray Morehart'},19.
{'position': 'OF', 'name': 'Ben Paschal'},20.
{'position': 'P', 'name': 'Herb Pennock'},21.
{'position': 'P', 'name': 'George Pipgras'},22.
{'position': 'P', 'name': 'Dutch Ruether'},23.
{'position': 'OF', 'name': 'Babe Ruth'},24.
{'position': 'P', 'name': 'Bob Shawkey'},25.
{'position': 'P', 'name': 'Urban Shocker'},26.
{'position': 'P', 'name': 'Myles Thomas'},27.
{'position': '3B', 'name': 'Julie Wera'}28.

]29.
30.

Each value will be a list of players, so we pass list to defaultdict31.
positions = defaultdict(list)32.

33.
Loop through list of yankees appending player names to their position keys34.
for player in yankees_1927:35.

positions[player['position']].append(player['name'])36.
37.

print(positions['P'])38.

This will output the list of pitchers:

18 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

[
'Walter Beall',
'Joe Giard',
'Waite Hoyt',
'Wilcy Moore',
'Herb Pennock',
'George Pipgras',
'Dutch Ruether',
'Bob Shawkey',
'Urban Shocker',
'Myles Thomas'
]

Add the following line of code to the for loop to watch as the players get added:

print(player['position'], positions[player['position']])

The beginning of the output will look like this:

…/advanced-python-concepts/Solutions> python defaultdict.py
P ['Walter Beall']
C ['Benny Bengough']
C ['Benny Bengough', 'Pat Collins']
OF ['Earle Combs']
3B ['Joe Dugan']
OF ['Earle Combs', 'Cedric Durst']
3B ['Joe Dugan', 'Mike Gazella']
1B ['Lou Gehrig']
P ['Walter Beall', 'Joe Giard']
C ['Benny Bengough', 'Pat Collins', 'Johnny Grabowski']
…

EVALUATION COPY: Not to be used in class.

❋

LESSON 1: Advanced Python Concepts | 19

EVALUATION COPY: Not to be used in class.

1.4. Counters

Consider again the defaultdict object we created to get the number of different ways each number
could be rolled when rolling two dice. This type of task is very common. You might have a collection
of plants and want to get a count of the number of each species or the number of plants by color. The
objects that hold these counts are called counters, and the collections module includes a special
Counter() class for creating them.

Although there are different ways of creating counters, they are most often created with an iterable,
like this:

from collections import Counter
c = Counter(['green', 'blue', 'blue', 'red', 'yellow', 'green', 'blue'])

This will create the following counter:

Counter({
'blue': 3,
'green': 2,
'red': 1,
'yellow': 1

})

To create a counter from the dice_rolls list we used earlier, we need to first create a list of sums
from it, like this:

roll_sums = [sum(roll) for roll in dice_rolls]

roll_sums will contain the following list:

[
2, 3, 4, 5, 6, 7,
3, 4, 5, 6, 7, 8,
4, 5, 6, 7, 8, 9,
5, 6, 7, 8, 9, 10,
6, 7, 8, 9, 10, 11,
7, 8, 9, 10, 11, 12

]

20 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

We then create the counter like this:

c = Counter(roll_sums)

That creates a counter that is very similar to the defaultdict we saw earlier:

Counter({
7: 6,
6: 5,
8: 5,
5: 4,
9: 4,
4: 3,
10: 3,
3: 2,
11: 2,
2: 1,
12: 1

})

The code in the following file creates and outputs the colors and dice rolls counters:

Demo 1.11: advanced-python-concepts/Demos/counter.py

from collections import Counter1.
c = Counter(['green','blue','blue','red','yellow','green','blue'])2.
print('Colors Counter:', c, sep='\n', end='\n\n')3.

4.
dice_rolls = [(a,b)5.

for a in range(1,7)6.
for b in range(1,7)]7.

8.
roll_sums = [sum(roll) for roll in dice_rolls]9.
c = Counter(roll_sums)10.
print('Dice Roll Counter:', c, sep='\n')11.

Run this file. It will output:

LESSON 1: Advanced Python Concepts | 21

EVALUATION COPY: Not to be used in class.

Colors Counter:
Counter({'blue': 3, 'green': 2, 'red': 1, 'yellow': 1})

Dice Roll Counter:
Counter({7: 6, 6: 5, 8: 5, 5: 4, 9: 4, 4: 3, 10: 3, 3: 2, 11: 2, 2: 1, 12: 1})

Updating Counters

Counter is a subclass of dict. We will learn more about subclasses later, but for now all you need to
understand is that a subclass generally has access to all of its superclass’s methods and data. So, Counter
supports all the standard dict instance methods. The update() method behaves differently though.
In standard dict objects, update() replaces key values with those of the passed-in dictionary:

Updating with a Dictionary

grades = {'English':97, 'Math':93, 'Art':74, 'Music':86}
grades.update({'Math':97, 'Gym':93})

The grades dictionary will now contain:

{
'English': 97,
'Math': 97, # 97 replaces 93
'Art': 74,
'Music': 86,
'Gym': 93 # Key is added with value of 93

}

In Counter objects, update() adds the values of a passed-in iterable or another Counter object to its
own values:

Updating a Counter with a List

>>> c = Counter(['green', 'blue', 'blue', 'red', 'yellow', 'green', 'blue'])
>>> c # Before update:
Counter({'blue': 3, 'green': 2, 'red': 1, 'yellow': 1})
>>> c.update(['red', 'yellow', 'yellow', 'purple'])
>>> c # After update:
Counter({'blue': 3, 'yellow': 3, 'green': 2, 'red': 2, 'purple': 1})

22 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

Updating a Counter with a Counter

>>> c = Counter(['green', 'blue', 'blue', 'red', 'yellow', 'green', 'blue'])
>>> d = Counter(['green', 'violet'])
>>> c.update(d)
>>> c
Counter({'green': 3, 'blue': 3, 'red': 1, 'yellow': 1, 'violet': 1})

Counters also have a corresponding subtract() method. It works just like update() but subtracts
rather than adds the passed-in iterable counts:

Subtracting with a Counter

>>> c = Counter(['green', 'blue', 'blue', 'red', 'yellow', 'green', 'blue'])
>>> c # Before subtraction:
Counter({'blue': 3, 'green': 2, 'red': 1, 'yellow': 1})
>>> c.subtract(['red', 'yellow', 'yellow', 'purple'])
>>> c # After subtraction:
Counter({'blue': 3, 'green': 2, 'red': 0, 'yellow': -1, 'purple': -1})

Notice that the value for the 'yellow' and 'purple' keys are negative, which is a little odd. We will learn
how to create a non-negative counter in a later lesson. (see page 196)

The most_common([n]) Method

Counters include a most_common([n]) method that returns the n most common elements and their
counts, sorted from most to least common. If n is not passed in, all elements are returned.

>>> c = Counter(['green', 'blue', 'blue', 'red', 'yellow', 'green', 'blue'])
>>> c.most_common()
[('blue', 3), ('green', 2), ('red', 1), ('yellow', 1)]
>>> c.most_common(2)
[('blue', 3), ('green', 2)]

LESSON 1: Advanced Python Concepts | 23

EVALUATION COPY: Not to be used in class.

 Exercise 3: Creating a Counter
 10 to 15 minutes

In this exercise, you will create a counter that holds the most common words used and the number of
times they show up in the U.S. Declaration of Independence.

1. Create a new Python script in advanced-python-concepts/Exercises named counter.py.

2. Write code that:

A. Reads the Declaration_of_Independence.txt file in the same folder.
B. Creates a list of all the words that have at least six characters.

Use split() to split the text into words. This will split the text on
whitespace. This isn’t quite correct as it doesn’t account for punctuation,
but for now, it’s good enough.

Use upper() to convert the words to uppercase.

C. Creates a Counter from the word list.
D. Outputs the most common ten words and their counts. The result should look like

this:

[
('PEOPLE', 13),
('STATES', 7),
('SHOULD', 5),
('INDEPENDENT', 5),
('AGAINST', 5),
('GOVERNMENT,', 4),
('ASSENT', 4),
('OTHERS', 4),
('POLITICAL', 3),
('POWERS', 3)

]

24 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

LESSON 1: Advanced Python Concepts | 25

EVALUATION COPY: Not to be used in class.

Solution: advanced-python-concepts/Solutions/counter.py

from collections import Counter1.
2.

with open('Declaration_of_Independence.txt') as f:3.
doi = f.read()4.

5.
word_list = [word for word in doi.upper().split() if len(word) > 5]6.

7.
c = Counter(word_list)8.
print(c.most_common(10))9.

EVALUATION COPY: Not to be used in class.

❋

1.5. Mapping and Filtering

 1.5.1. map(function, iterable, …)

The built-in map() function is used to sequentially pass all the values of an iterable (or multiple iterables)
to a function and return an iterator containing the returned values. It can be used as an alternative to
list comprehensions. First, consider the following code sample that does not use map():

26 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

Demo 1.12: advanced-python-concepts/Demos/without_map.py

def multiply(x, y):1.
return x * y2.

3.
def main():4.

nums1 = range(0, 10)5.
nums2 = range(10, 0, -1)6.

7.
multiples = []8.
for i in range(len(nums1)):9.

multiple = multiply(nums1[i], nums2[i])10.
multiples.append(multiple)11.

12.
for multiple in multiples:13.

print(multiple)14.
15.

main()16.

This code creates an iterator (a list) by multiplying 0 by 10, 1 by 9, 2 by 8,… and 9 by 1. It then loops
through the iterator printing each result. It will output:

0
9
16
21
24
25
24
21
16
9

The following code sample does the same thing using map():

LESSON 1: Advanced Python Concepts | 27

EVALUATION COPY: Not to be used in class.

Demo 1.13: advanced-python-concepts/Demos/with_map.py

def multiply(x, y):1.
return x * y2.

3.
def main():4.

nums1 = range(0, 10)5.
nums2 = range(10, 0, -1)6.

7.
multiples = map(multiply, nums1, nums2)8.

9.
for multiple in multiples:10.

print(multiple)11.
12.

main()13.

We could also include the map() function right in the for loop:

for multiple in map(multiply, nums1, nums2):
print(multiple)

Note that you can accomplish the same thing with a list comprehension:

multiples = [multiply(nums1[i], nums2[i]) for i in range(len(nums1))]

One possible advantage of using map() in combination with multiple sequences is that it will not error
if the sequences are different lengths. It will stop mapping when it reaches the end of the shortest
sequence. In some cases, this might also be a disadvantage as it might hide a bug in the code. Also, this
“feature” can be reproduced easily enough using the min() function:

[multiply(nums1[i], nums2[i]) for i in range(min(len(nums1), len(nums2)))]

 1.5.2. filter(function, iterable)

The built-in filter() function is used to sequentially pass all the values of a single iterable to a
function and return an iterator containing the values for which the function returns True. As with
map(), filter() can be used as an alternative to list comprehensions. First, consider the following
code sample that does not use filter():

28 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

Demo 1.14: advanced-python-concepts/Demos/without_filter.py

def is_odd(num):1.
return num % 22.

3.
def main():4.

nums = range(0, 10)5.
6.

odd_nums = []7.
for num in nums:8.

if is_odd(num):9.
odd_nums.append(num)10.

11.
for num in odd_nums:12.

print(num)13.
14.

main()15.

This code passes a range of numbers one by one to the is_odd() function to create an iterator (a list)
of odd numbers. It then loops through the iterator printing each result. It will output:

1
3
5
7
9

The following code sample does the same thing using filter():

Demo 1.15: advanced-python-concepts/Demos/with_filter.py

def is_odd(num):1.
return num % 22.

3.
def main():4.

nums = range(0, 10)5.
6.

odd_nums = filter(is_odd, nums)7.
8.

for num in odd_nums:9.
print(num)10.

11.
main()12.

LESSON 1: Advanced Python Concepts | 29

EVALUATION COPY: Not to be used in class.

As with map(), we can include the filter() function right in the for loop:

for num in filter(is_odd, nums):
print(num)

Again, you can accomplish the same thing with a list comprehension:

odd_nums = [num for num in nums if is_odd(num)]

 1.5.3. Using Lambda Functions with map() and filter()

The map() and filter() functions are both often used with lambda functions, like this:

>>> nums1 = range(0, 10)
>>> nums2 = range(10, 0, -1)
>>> for multiple in map(lambda n: nums1[n] * nums2[n], range(10)):
... print(multiple)
...
0
9
16
21
24
25
24
21
16
9

>>> for num in filter(lambda n: n % 2 == 1, range(10)):
... print(num)
...
1
3
5
7
9

30 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

Let’s just *keep* lambda

Some programmers, including Guido van Rossum, the creator of Python, dislike lambda,
filter() and map(). These programmers feel that list comprehension can generally be used
instead. However, other programmers love these functions and Guido eventually gave up the
fight to remove them from Python. In February, 2006, he wrote:1

After so many attempts to come up with an alternative for lambda, perhaps we should
admit defeat. I’ve not had the time to follow the most recent rounds, but I propose that

we keep lambda, so as to stop wasting everybody’s talent and time on an impossible
quest.

You’ll have to decide for yourself whether or not to use them.

EVALUATION COPY: Not to be used in class.

❋

1.6. Mutable and Immutable Built-in Objects

The difference between mutable objects, such as lists and dictionaries, and immutable objects, such as
strings, integers, and tuples, may seem pretty straightforward: mutable objects can be changed; immutable
objects cannot. But it helps to have a deeper understanding of how this can affect your code.

Consider the following code:

1. https://mail.python.org/pipermail/python-dev/2006-February/060415.html

LESSON 1: Advanced Python Concepts | 31

EVALUATION COPY: Not to be used in class.

https://mail.python.org/pipermail/python-dev/2006-February/060415.html
https://mail.python.org/pipermail/python-dev/2006-February/060415.html

>>> v1 = 'A'
>>> v2 = 'A'
>>> v1 is v2
True
>>> list1 = ['A']
>>> list2 = ['A']
>>> list1 is list2
False

Immutable objects cannot be modified in place. Every time you “change” a string, you are actually
creating a new string:

>>> name = 'Nat'
>>> id(name)
2613698710320
>>> name += 'haniel'
>>> id(name)
2613698710512

Notice the ids are different. It is impossible to modify an immutable object in place.

Lists, on the other hand, are mutable and can be modified in place. For example:

>>> v1 = [1, 2]
>>> v2 = v1
>>> id(v1) == id(v2)
True # Both variables point to the same list
>>> v1, v2
([1, 2], [1, 2])
>>> v2 += [3]
>>> v1, v2
([1, 2, 3], [1, 2, 3])
>>> id(v1) == id(v2)
True # Both variables still point to the same list

Notice that with lists, v2 changes when we change v1. Both are pointing at the same list object, which
is mutable. So, when we modify the v2 list, we see the change in v1, because it points to the same
object.

Be careful though. If you use the assignment operator, you will overwrite the old list and create a new
list object:

32 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

>>> v1 = [1, 2]
>>> v2 = v1
>>> v1, v2
([1, 2], [1, 2])
>>> v1 = v1 + [3]
>>> v1, v2
([1, 2, 3], [1, 2])

Assigning v1 explicitly with the assignment operator, rather than appending a value via v1.append(3),
results in a new object.

EVALUATION COPY: Not to be used in class.

❋

LESSON 1: Advanced Python Concepts | 33

EVALUATION COPY: Not to be used in class.

1.7. Sorting

 1.7.1. Sorting Lists in Place

Python lists have a sort() method that sorts the list in place:

colors = ['red', 'blue', 'green', 'orange']
colors.sort()

The colors list will now contain:

['blue', 'green', 'orange', 'red']

The sort() method can take two keyword arguments: key and reverse.

reverse

The reverse argument is a boolean:

colors = ['red', 'blue', 'green', 'orange']
colors.sort(reverse=True)

The colors list will now contain:

['red', 'orange', 'green', 'blue']

key

The key argument takes a function to be called on each list item and performs the sort based on the
result. For example, the following code will sort by word length:

colors = ['red', 'blue', 'green', 'orange']
colors.sort(key=len)

The colors list will now contain:

34 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

['red', 'blue', 'green', 'orange']

And the following code will sort by last name:

def get_lastname(name):
return name.split()[-1]

people = ['George Washington', 'John Adams',
'Thomas Jefferson', 'John Quincy Adams']

people.sort(key=get_lastname)

The people list will now contain:

[
'John Adams',
'John Quincy Adams',
'Thomas Jefferson',
'George Washington'

]

Note that John Quincy Adams shows up after John Adams in the result only because he shows up after
him in the initial list. Our code as it stands does not take into account middle or first names.

Using Lambda Functions with key

If you don’t want to create a new named function just to perform the sort, you can use a lambda
function. For example, the following code would do the same thing as the code above without the need
for the get_lastname() function:

people = ['George Washington', 'John Adams',,
'Thomas Jefferson', 'John Quincy Adams']

people.sort(key=lambda name: name.split()[-1])

Combining key and reverse

The key and reverse arguments can be combined. For example, the following code will sort by word
length in descending order:

LESSON 1: Advanced Python Concepts | 35

EVALUATION COPY: Not to be used in class.

colors = ['red', 'blue', 'green', 'orange']
colors.sort(key=len, reverse=True)

The colors list will now contain:

['orange', 'green', 'blue', 'red']

 1.7.2. The sorted() Function

The built-in sorted() function requires an iterable as its first argument and can take key and reverse
as keyword arguments. It works just like the list’s sort() method except that:

1. It does not modify the iterable in place. Rather, it returns a new sorted list.

2. It can take any iterable, not just a list (but it always returns a list).

36 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

 Exercise 4: Converting list.sort() to
sorted(iterable)

 15 to 25 minutes

In this exercise, you will convert all the examples of sort() we saw earlier to use sorted() instead.

1. Open advanced-python-concepts/Exercises/sorting.py in your editor.

2. The code in the first example has already been converted to use sorted().

3. Convert all other code examples in the script.

LESSON 1: Advanced Python Concepts | 37

EVALUATION COPY: Not to be used in class.

Exercise Code 4.1: advanced-python-concepts/Exercises/sorting.py

Simple sort() method1.
colors = ['red', 'blue', 'green', 'orange']2.
colors.sort()3.
new_colors = sorted(colors) # This one has been done for you4.
print(new_colors)5.

6.
The reverse argument:7.
colors.sort(reverse=True)8.
print(colors)9.

10.
The key argument:11.
colors.sort(key=len)12.
print(colors)13.

14.
The key argument with named function:15.
def get_lastname(name):16.

return name.split()[-1]17.
18.

people = ['George Washington', 'John Adams',19.
'Thomas Jefferson', 'John Quincy Adams']20.

people.sort(key=get_lastname)21.
print(people)22.

23.
The key argument with lambda:24.
people.sort(key=lambda name: name.split()[-1])25.
print(people)26.

27.
Combing key and reverse28.
colors.sort(key=len, reverse=True)29.
print(colors)30.

When you’re done, run the file. The output should look like this:

['blue', 'green', 'orange', 'red']
['red', 'orange', 'green', 'blue']
['red', 'blue', 'green', 'orange']
['John Adams', 'John Quincy Adams', 'Thomas Jefferson', 'George Washington']
['John Adams', 'John Quincy Adams', 'Thomas Jefferson', 'George Washington']
['orange', 'green', 'blue', 'red']

38 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

LESSON 1: Advanced Python Concepts | 39

EVALUATION COPY: Not to be used in class.

Solution: advanced-python-concepts/Solutions/sorting.py

Simple sort() method1.
colors = ['red', 'blue', 'green', 'orange']2.
colors.sort()3.
new_colors = sorted(colors) # This one has been done for you4.
print(new_colors)5.

6.
The reverse argument:7.
colors.sort(reverse=True)8.
print(colors)9.
new_colors = sorted(colors, reverse=True)10.
print(new_colors)11.

12.
The key argument:13.
colors.sort(key=len)14.
print(colors)15.
new_colors = sorted(colors, key=len)16.
print(new_colors)17.

18.
The key argument with named function:19.
def get_lastname(name):20.

return name.split()[-1]21.
22.

people = ['George Washington', 'John Adams',23.
'Thomas Jefferson', 'John Quincy Adams']24.

people.sort(key=get_lastname)25.
print(people)26.
new_people = sorted(people, key=get_lastname)27.
print(new_people)28.

29.
The key argument with lambda function:30.
people = ['George Washington', 'John Adams',31.

'Thomas Jefferson', 'John Quincy Adams']32.
people.sort(key=lambda name: name.split()[-1])33.
print(people)34.
new_people = sorted(people, key=lambda name: name.split()[-1])35.
print(new_people)36.

37.
Combining key and reverse38.
colors.sort(key=len, reverse=True)39.
print(colors)40.
new_colors = sorted(colors, key=len, reverse=True)41.
print(new_colors)42.

40 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

EVALUATION COPY: Not to be used in class.

❋

1.8. Sorting Sequences of Sequences

When you sort a sequence of sequences, Python first sorts by the first element of each sequence, then
by the second element, and so on. For example:

ww2_leaders = [
('Charles', 'de Gaulle'),
('Winston', 'Churchill'),
('Teddy', 'Roosevelt'), # Not a WW2 leader, but helps make point
('Franklin', 'Roosevelt'),
('Joseph', 'Stalin'),
('Adolph', 'Hitler'),
('Benito', 'Mussolini'),
('Hideki', 'Tojo')

]

ww2_leaders.sort()

The ww2_leaders list will be sorted by first name and then by last name. It will now contain:

[
('Adolph', 'Hitler'),
('Benito', 'Mussolini'),
('Charles', 'de Gaulle'),
('Franklin', 'Roosevelt'),
('Hideki', 'Tojo'),
('Joseph', 'Stalin'),
('Teddy', 'Roosevelt'),
('Winston', 'Churchill')

]

To change the order of the sort, use a lambda function:

ww2_leaders.sort(key=lambda leader: (leader[1], leader[0]))

LESSON 1: Advanced Python Concepts | 41

EVALUATION COPY: Not to be used in class.

The ww2_leaders list will now be sorted by last name and then by first name. It will now contain:

[
('Winston', 'Churchill'),
('Adolph', 'Hitler'),
('Benito', 'Mussolini'),
('Franklin', 'Roosevelt'),
('Teddy', 'Roosevelt'),
('Joseph', 'Stalin'),
('Hideki', 'Tojo'),
('Charles', 'de Gaulle')

]

It may seem strange that “de Gaulle” comes after “Tojo,” but that is correct. Lowercase letters come
after uppercase letters in sorting. To change the result, you can use the lower() function:

ww2_leaders.sort(key=lambda leader: (leader[1].lower(), leader[0]))

ww2_leaders will now contain:

[
('Winston', 'Churchill'),
('Charles', 'de Gaulle'),
('Adolph', 'Hitler'),
('Benito', 'Mussolini'),
('Franklin', 'Roosevelt'),
('Teddy', 'Roosevelt'),
('Joseph', 'Stalin'),
('Hideki', 'Tojo')

]

The preceding code can also be found in advanced-python-concepts/Demos/sequence_of_se
quences.py.

 1.8.1. Sorting Sequences of Dictionaries

You may often find data stored as lists of dictionaries:

42 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

from datetime import date
ww2_leaders = []
ww2_leaders.append(

{'fname':'Winston', 'lname':'Churchill', 'dob':date(1889,4,20)}
)
ww2_leaders.append(

{'fname':'Charles', 'lname':'de Gaulle', 'dob':date(1883,7,29)}
)
ww2_leaders.append(

{'fname':'Adolph', 'lname':'Hitler', 'dob':date(1890,11,22)}
)
ww2_leaders.append(

{'fname':'Benito', 'lname':'Mussolini', 'dob':date(1882,1,30)}
)
ww2_leaders.append(

{'fname':'Franklin', 'lname':'Roosevelt', 'dob':date(1884,12,30)}
)
ww2_leaders.append(

{'fname':'Joseph', 'lname':'Stalin', 'dob':date(1878,12,18)}
)
ww2_leaders.append(

{'fname':'Hideki', 'lname':'Tojo', 'dob':date(1874,11,30)}
)

This data can be sorted using a lambda function similar to how we sorted lists of tuples:

ww2_leaders.sort(key=lambda leader: leader['dob'])

You can use this same technique to sort by a tuple:

ww2_leaders.sort(key=lambda leader: (leader['lname'], leader['fname']))

The preceding code can also be found in advanced-python-concepts/Demos/sequence_of_dic
tionaries.py.

itemgetter()

While the method shown above works fine, the operator module provides an itemgetter() method
that performs this same task a bit faster. It works like this:

LESSON 1: Advanced Python Concepts | 43

EVALUATION COPY: Not to be used in class.

Demo 1.16:
advanced-python-concepts/Demos/sorting_with_itemgetter.py

from datetime import date1.
from operator import itemgetter2.

3.
def main():4.
-------Lines 5 through 27 Omitted-------

ww2_leaders.sort(key=itemgetter('dob'))28.
print('First born:', ww2_leaders[0]['fname'])29.

30.
ww2_leaders.sort(key=itemgetter('lname', 'fname'))31.
print('First in Encyclopedia:', ww2_leaders[0]['fname'])32.

33.
main()34.

EVALUATION COPY: Not to be used in class.

❋

1.9. Creating a Dictionary from Two Sequences

Follow these steps to make a dictionary from two lists using the first list for keys and the second list
for values:

1. Use the built-in zip() function to make a list of two-element tuples from the two lists:

>>> courses = ['English', 'Math', 'Art', 'Music']
>>> grades = [96, 99, 88, 94]
>>> z = zip(courses, grades)

This will result in a zip object.

2. Pass the zip object to the dict() constructor:

>>> course_grades = dict(z)
>>> course_grades
{'English': 96, 'Math': 99, 'Art': 88, 'Music': 94}

You can do the above in one step, like this:

44 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

course_grades = dict(zip(courses, grades))

This works with any type of sequence. For example, you could create a dictionary mapping letters to
numbers like this:

>>> letter_mapping = dict(zip('abcdef', range(6)))
>>> letter_mapping
{'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, 'f': 5}

EVALUATION COPY: Not to be used in class.

❋

1.10. Unpacking Sequences in Function Calls

Sometimes you’ll have a sequence that contains the exact arguments a function needs. To illustrate,
consider the following function:

import math
def distance_from_origin(a, b):

return math.sqrt(a**2 + b**2)

The function expects two arguments, a and b, which are the x, y coordinates of a point. It uses the
Pythagorean theorem to determine the distance the point is from the origin.

We can call the function like this:

c = distance_from_origin(3, 4)

But it would be nice to be able to call the function like this too:

point = (3, 4)
c = distance_from_origin(point)

However, that will cause an error because the function expects two arguments and we’re only passing
in one.

LESSON 1: Advanced Python Concepts | 45

EVALUATION COPY: Not to be used in class.

One solution would be to pass the individual elements of our point:

point = (3, 4)
c = distance_from_origin(point[0], point[1])

But Python provides an even easier solution. We can use an asterisk in the function call to unpack the
sequence into separate elements:

point = (3, 4)
c = distance_from_origin(*point)

When you pass a sequence preceded by an asterisk into a function, the sequence gets unpacked, meaning
that the function receives the individual elements rather than the sequence itself.

The preceding code can also be found in advanced-python-concepts/Demos/unpacking_func
tion_arguments.py.

46 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

 Exercise 5: Converting a String to a
datetime.date Object

 10 to 20 minutes

In this exercise, you will convert a string representing a date to a datetime.date object. This is the
starting code:

Exercise Code 5.1:
advanced-python-concepts/Exercises/converting_date_string_to_datetime.py

import datetime1.
2.

def str_to_date(str_date):3.
Write function4.
pass5.

6.
str_date = input('Input date as YYYY-MM-DD: ')7.
date = str_to_date(str_date)8.
print(date)9.

1. Open advanced-python-concepts/Exercises/converting_date_string_to_date
time.py in your editor.

2. The imported datetime module includes a date() method that can create a date object
from three passed-in parameters: year, month, and day. For example:

datetime.date(1776, 7, 4)

3. Write the code for the str_to_date() function so that it…

A. Splits the passed-in string into a list of date parts. Each part should be an integer.

B. Returns a date object created by passing the unpacked list of date parts to
datetime.date().

LESSON 1: Advanced Python Concepts | 47

EVALUATION COPY: Not to be used in class.

Solution:
advanced-python-concepts/Solutions/converting_date_string_to_datetime.py

import datetime1.
2.

def str_to_date(str_date):3.
date_parts = [int(i) for i in str_date.split("-")]4.
return datetime.date(*date_parts)5.

6.
str_date = input('Input date as YYYY-MM-DD: ')7.
date = str_to_date(str_date)8.
print(date)9.

EVALUATION COPY: Not to be used in class.

❋

1.11. Modules and Packages

You have worked with different Python modules (e.g., random and math) and packages (e.g.,
collections). In general, it’s not all that important to know whether a library you want to use is a
module or a package, but there is a difference, and when you’re creating your own, it’s important to
understand that difference.

 1.11.1. Modules

A module is a single file. It can be made up of any number of functions and classes. You can import
the whole module using:

import module_name

Or you can import specific functions or classes from the module using:

from module_name import class_or_function_name

For example, if you want to use the random() function from the random module, you can do so by
importing the whole module or by importing just the random() function:

48 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

>>> import random
>>> random.random()
0.8843194837647139
>>> from random import random
>>> random()
0.251050616400771

As shown above, when you import the whole module, you must prefix the module’s functions with
the module name.

Every .py file is a module. When you build a module with the intention of making it available to other
modules for importing, it is common to include a _test() function that runs tests when the module
is run directly. For example, if you run random.py, which is in the Lib directory of your Python home,
the output will look something like this:

2000 times random
0.003 sec, avg 0.500716, stddev 0.285239, min 0.000495333, max 0.99917

2000 times normalvariate
0.004 sec, avg 0.0061499, stddev 0.971102, min -2.86188, max 3.02266

2000 times lognormvariate
0.004 sec, avg 1.64752, stddev 2.12612, min 0.0310675, max 28.5174
…

Where is My Python Home?

To find your Python home, run the following code:

Demo 1.17: advanced-python-concepts/Demos/find_python_home.py

import sys1.
import os2.

3.
python_home = os.path.dirname(sys.executable)4.
print(python_home)5.

Open random.py in an editor and you will see it ends with this code:

LESSON 1: Advanced Python Concepts | 49

EVALUATION COPY: Not to be used in class.

if __name__ == '__main__':
_test()

The __name__ variable of any module that is imported holds that module’s name. For example, if you
import random and then print random.__name__, it will output “random”. However, if you open
random.py, add a line that reads print(__name__), and run it, it will print “__main__”. So, the if
condition in the code above just checks to see if the file has been imported. If it hasn’t (i.e., if it’s
running directly), then it will call the _test() function.

If you do not want to write tests, you could include code like this:

if __name__ == '__main__':
print('This module is for importing, not for running directly.')

 1.11.2. Packages

A package is a group of files (and possibly subfolders) stored in a directory that includes a file named
__init__.py. The __init__.py file does not need to contain any code. Some libraries’ __init__.py files
have a simple comment like this:

Dummy file to make this a package.

However, you can include code in the __init__.py file that will initialize the package. You can also (but
do not have to) set a global __all__ variable, which should contain a list of files to be imported when
a file imports your package using from package_name import *. If you do not set the __all__
variable, then that form of import will not be allowed, which may be just fine.

 1.11.3. Search Path for Modules and Packages

The Python interpreter must locate the imported modules. When import is used within a script, the
interpreter searches for the imported module in the following places sequentially:

1. The current directory (same directory as script doing the importing).

2. The library of standard modules.

3. The paths defined in sys.path.2

2. sys.path contains a list of strings specifying the search path for modules. The list is os-dependent. To see your list, import sys,
and then output sys.path.

50 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

As you see, the steps involved in creating modules and packages for import are relatively straightforward.
However, designing useful and easy-to-use modules and packages takes a lot of planning and thought.

Conclusion

In this lesson, you have learned several advanced techniques with sequences. You have also learned to
do mapping and filtering, and to use lambda functions. Finally, you have learned how modules and
packages are created.

LESSON 1: Advanced Python Concepts | 51

EVALUATION COPY: Not to be used in class.

52 | LESSON 1: Advanced Python Concepts

EVALUATION COPY: Not to be used in class.

LESSON 2
Regular Expressions

EVALUATION COPY: Not to be used in class.

Topics Covered

 Understanding regular expressions.

 Python’s re module.

Introduction

Regular expressions are used to do pattern matching in many programming languages, including Java,
PHP, JavaScript, C, C++, and Perl. We will provide a brief introduction to regular expressions and
then we’ll show you how to work with them in Python.

EVALUATION COPY: Not to be used in class.

❋

2.1. Regular Expression Tester

We will use the online regular expression testing tool at https://pythex.org to demonstrate and
test our regular expressions. To see how it works, open the page in your browser:

LESSON 2: Regular Expressions | 53

EVALUATION COPY: Not to be used in class.

https://pythex.org

As shown in the screenshot:

1. Enter “rose” in the Your regular expression field.

2. Enter “A rose is a rose is a rose.” in the Your test string field.

3. Notice the Match result. The parts of the string that match your pattern will be highlighted.

Usually, you will want to have the MULTILINE option selected so that each line will be tested
individually.

In the Your test string field, you can test multiple strings:

54 | LESSON 2: Regular Expressions

EVALUATION COPY: Not to be used in class.

These examples just find occurrences of a substring (e.g., “rose”) in a string (e.g, “A rose is a rose is a
rose.”). But the power of regular expressions is in pattern matching. The best way to get a feel for them
is to try them out. So, let’s do that.

EVALUATION COPY: Not to be used in class.

❋

2.2. Regular Expression Syntax

Here we’ll show the different symbols used in regular expressions. You should use https://pythex.org
to test the patterns we show.

Start and End (^ $)

A caret (^) at the beginning of a regular expression indicates that the string being searched must start
with this pattern.

The pattern ^dog can be found in “dogfish”, but not in “bulldog” or “boondoggle”.

A dollar sign ($) at the end of a regular expression indicates that the string being searched must end
with this pattern.

The pattern dog$ can be found in “bulldog”, but not in “dogfish” or “boondoggle”.

Word Boundaries (\b \B)

Backslash-b (\b) denotes a word boundary. It matches a location at the beginning or end of a word.
A word is a sequence of numbers, letters, and underscores. Any other character is considered a word
boundary.

The pattern dog\b matches the first but not the second occurence of “dog” in the phrase
“The bulldog bit the dogfish.”
In the phrase “The dogfish bit the bulldog.”, it only matches the second occurrence of “dog”,
because a period is a word boundary.

Backslash-B (\B) is the opposite of backslash-b (\b). It matches a location that is not a word boundary.

LESSON 2: Regular Expressions | 55

EVALUATION COPY: Not to be used in class.

https://pythex.org

The pattern dog\B matches the second but not the first occurence of “dog” in the phrase
“The bulldog bit the dogfish.”
But in the phrase “The dogfish bit the bulldog.”, it only matches the first occurrence of “dog”.

Number of Occurrences (? + * {})

The following symbols affect the number of occurrences of the preceding character: ?, +, *, and {}.

A question mark (?) indicates that the preceding character should appear zero or one times in the
pattern.

The pattern go?ad can be found in “goad” and “gad”, but not in “gooad”. Only zero or one
“o” is allowed before the “a”.

A plus sign (+) indicates that the preceding character should appear one or more times in the pattern.

The pattern go+ad can be found in “goad”, “gooad” and “goooad”, but not in “gad”.

An asterisk (*) indicates that the preceding character should appear zero or more times in the pattern.

The pattern go*ad can be found in “gad”, “goad”, “gooad” and “goooad”.

Curly braces with one parameter ({n}) indicate that the preceding character should appear exactly n
times in the pattern.

The pattern fo{3}d can be found in “foood” , but not in “food” or “fooood”.

Curly braces with two parameters ({n1,n2}) indicate that the preceding character should appear
between n1 and n2 times in the pattern.

The pattern fo{2,4}d can be found in “food”, “foood” and “fooood”, but not in “fod” or
“foooood”.

Curly braces with one parameter and an empty second parameter ({n,}) indicate that the preceding
character should appear at least n times in the pattern.

The pattern fo{2,}d can be found in “food” and “foooood”, but not in “fod”.

Common Characters (. \d \D \w \W \s \S)

A period (.) represents any character except a newline.

56 | LESSON 2: Regular Expressions

EVALUATION COPY: Not to be used in class.

The pattern fo.d can be found in “food”, “foad”, “fo9d”, and “fo d”.

Backslash-d (\d) represents any digit. It is the equivalent of [0-9] (to be discussed soon).

The pattern fo\dd can be found in “fo1d”, “fo4d” and “fo0d”, but not in “food” or “fodd”.

Backslash-D (\D) represents any character except a digit. It is the equivalent of [^0-9] (to be discussed
soon).

The pattern fo\Dd can be found in “food” and “fold”, but not in “fo4d”.

Backslash-w (\w) represents any word character (letters, digits, and the underscore (_)).

The pattern fo\wd can be found in “food”, “fo_d” and “fo4d”, but not in “fo*d”.

Backslash-W (\W) represents any character except a word character.

The pattern fo\Wd can be found in “fo*d”, “fo@d” and “fo.d”, but not in “food”.

Backslash-s (\s) represents any whitespace character (e.g., space, tab, newline).

The pattern fo\sd can be found in “fo d”, but not in “food”.

Backslash-S (\S) represents any character except a whitespace character.

The pattern fo\Sd can be found in “fo*d”, “food” and “fo4d”, but not in “fo d”.

Character Classes ([])

Square brackets ([]) are used to create a character class (or character set), which specifies a set of
characters to match.

The pattern f[aeiou]d can be found in “fad” and “fed”, but not in “food”, “fyd” or “fd”

[aeiou] matches an “a”, an “e”, an “i”, an “o”, or a “u”

The pattern f[aeiou]{2}d can be found in “faed” and “feod”, but not in “fod”, “fold” or
“fd”.

The pattern [A-Za-z]+ can be found twice in “Webucator, Inc.”, but not in “13066”.

[A-Za-z] matches any lowercase or uppercase letter.

[A-Z] matches any uppercase letter.

LESSON 2: Regular Expressions | 57

EVALUATION COPY: Not to be used in class.

[a-z] matches any lowercase letter.

The pattern [1-9]+ can be found twice in “13066”, but not in “Webucator, Inc.”

Negation (^)

When used as the first character within a character class, the caret (^) is used for negation. It matches
any characters not in the set.

The pattern f[^aeiou]d can be found in “fqd” and “f4d”, but not in “fad” or “fed”.

Groups (())

Parentheses (()) are used to capture subpatterns and store them as groups, which can be retrieved
later.

The pattern f(oo)?d can be found in “food” and “fd”, but not in “fod”.

The whole group can show up zero or one time.

Alternatives (|)

The pipe (|) is used to create optional patterns.

The pattern ̂ web|or$ can be found in “website”, “educator”, and twice in “webucator”, but
not in “cobweb” or “orphan”.

Escape Character (\)

The backslash (\) is used to escape special characters.

The pattern fo\.d can be found in “fo.d”, but not in “food” or “fo4d”.

 2.2.1. Backreferences

Backreferences are special wildcards that refer back to a group within a pattern. They can be used to
make sure that two subpatterns match. The first group in a pattern is referenced as \1, the second
group is referenced as \2, and so on.

For example, the pattern ([bmpr])o\1 matches “bobcat”, “thermometer”, “popped”, and “prorate”.

58 | LESSON 2: Regular Expressions

EVALUATION COPY: Not to be used in class.

A more practical example has to do with matching the delimiter in social security numbers. Examine
the following regular expression:

^\d{3}([\-]?)\d{2}([\-]?)\d{4}$

Within the caret (^) and dollar sign ($), which are used to specify the beginning and end of the pattern,
there are three sequences of digits, optionally separated by a hyphen or a space. This pattern will be
matched in all of the following strings (and more):

123-45-6789
123 45 6789
123456789
123-45 6789
123 45-6789
123-456789

The last three strings are not ideal, but they do match the pattern. Backreferences can be used to make
sure that the second delimiter matches the first delimiter. The regular expression would look like this:

^\d{3}([\-]?)\d{2}\1\d{4}$

The \1 refers back to the first subpattern. Only the first three strings listed above match this regular
expression.

EVALUATION COPY: Not to be used in class.

❋

2.3. Python’s Handling of Regular Expressions

In Python, you use the re module to access the regular expression engine. Here is a very simple
illustration. Imagine you’re looking for the pattern “r[aeiou]se” in the string “A rose is a rose is a rose.”

1. Import the re module:

import re

LESSON 2: Regular Expressions | 59

EVALUATION COPY: Not to be used in class.

2. Use the compile() method to make an object from the pattern that you can then use to
search strings for pattern matches:

p = re.compile('r[aeiou]se')

3. Search the string for a match:

result = p.search('A rose is a rose is a rose.')

4. Print the result:

print(result)

This will print the following, showing that the result is a match object and that it found the match
“rose” starting at index 2 and ending at index 6:

<_sre.SRE_Match object; span=(2, 6), match='rose'>

Compiling a regular expression pattern into an object is a good idea if you’re going to reuse the expression
throughout the program, but if you’re just using it once or twice, you can use the module-level search()
method, like this:

>>> result = re.search('r[aeiou]se', 'A rose is a rose is a rose.')
>>> result
<re.Match object; span=(2, 6), match='rose'>

Raw String Notation

Python uses the backslash character (\) to escape special characters. For example \n is a newline
character. A call to print('a\nb\nc') will print the letters a, b, and c each on its own line:

>>> print('a\nb\nc')
a
b
c

If you actually want to print a backslash followed by an “n”, you need to escape the backslash with
another backslash, like this: print('a\\nb\\nc'). That will print the literal string “a\nb\nc”:

60 | LESSON 2: Regular Expressions

EVALUATION COPY: Not to be used in class.

>>> print('a\\nb\\nc')
a\nb\nc

Python provides another way of doing this. Instead of escaping all the backslashes, you can use rawstring
notation by placing the letter “r” before the beginning of the string, like this: print(r'a\nb\nc'):

>>> print(r'a\nb\nc')
a\nb\nc

While this may not come in very handy in most areas of programming, it is very helpful when writing
regular expression patterns. That is because the regular expression syntax also uses the backslash for
special characters. If you don’t use raw string notation, you may find your patterns filled with backslashes.

The takeaway: Always use raw string notation for your patterns.

Regular Expression Object Methods

1. p.search(string) – Finds the first substring that matches the pattern. Returns a Match
object or None.

>>> p = re.compile(r'\W')
>>> p.search('andré@example.com')
<re.Match object; span=(5, 6), match='@'>

This finds the first non-word character.

2. p.match(string) – Like search(), but the match must be found at the beginning of the
string. Returns a Match object or None.

>>> p = re.compile(r'\W')
>>> p.match('andré@example.com') # Returns None
>>> p.match('@example.com')
<re.Match object; span=(0, 1), match='@'>

This matches the first character if it is a non-word character. The first example returns None
as the passed-in string begins with “a”.

LESSON 2: Regular Expressions | 61

EVALUATION COPY: Not to be used in class.

3. p.fullmatch(string) – Like search(), but the whole string must match. Returns a Match
object or None.

>>> p = re.compile(r'[\w\.]+@example.com')
>>> p.match('andré@example.com')
<re.Match object; span=(0, 17), match='andré@example.com'>

This matches a string made up of word characters and periods followed by “@example.com”.

4. p.findall(string) – Finds all non-overlapping matches. Returns a list of strings.

>>> p = re.compile(r'\W')
>>> p.findall('andré@example.com')
['@', '.']

This returns a list of all matches of non-word characters.

5. p.split(string, maxsplit=0) – Splits the string on pattern matches. If maxsplit is
nonzero, limits splits to maxsplit. Returns a list of strings.

>>> p = re.compile(r'\W')
>>> p.split('andré@example.com')
['andré', 'example', 'com']

This splits the string on non-word characters.

6. p.sub(repl, string, count=0) – Replaces all non-overlapping matches in string with
repl. If count is nonzero, limits replacements to count. More details on sub() under Using
sub() with a Function (see page 64). Returns a string.

All the methods that search a string for a pattern (search(), match(), fullmatch(), and findall())
include start and end parameters that indicate what positions in the string to start and end the search.

Groups

As discussed earlier, parentheses in regular expression patterns are used to capture groups. You can
access these groups individually using a match object’s group() method or all at once using its groups()
method.

The group() method takes an integer3 as an argument and returns a string:

3. Groups can also be named through a Python extension to regular expressions. For more information, see
https://docs.python.org/3/howto/regex.html#non-capturing-and-named-groups.

62 | LESSON 2: Regular Expressions

EVALUATION COPY: Not to be used in class.

https://docs.python.org/3/howto/regex.html#non-capturing-and-named-groups

match.group(0) returns the whole match.

match.group(1) returns the first group found.

match.group(2) returns the second group found.
And so on...

You can also get multiple groups at the same time returned as a tuple of strings by passing in more
than one argument (e.g., match.group(1, 2)).

When nested parentheses are used in the pattern, the outer group is returned before the inner group.
Here is an example that illustrates that:

>>> import re
>>> p = re.compile(r'(\w+)@(\w+\.(\w+))')
>>> match = p.match('andre@example.com')
>>> email = match.group(0)
>>> handle = match.group(1)
>>> domain = match.group(2)
>>> domain_type = match.group(3)
>>> print(email, handle, domain, domain_type, sep='\n')
andre@example.com
andre
example.com
com

Notice that “example.com” is group 2 and “com”, which is nested within “example.com” is group 3.

And you can use the groups() method to get them all at once:

>>> print(match.groups())
('andre', 'example.com', 'com')

Flags

The compile() method takes an optional second argument: flags. The flags are constants that can
be used individually or combined with a pipe (|).

re.compile(pattern, re.FLAG1|re.FLAG2)

The two most useful flags are (shortcut versions in parentheses):

LESSON 2: Regular Expressions | 63

EVALUATION COPY: Not to be used in class.

1. re.IGNORECASE (re.I) – Makes the pattern case insensitive.

2. re.MULTILINE (re.M) – Makes ^ and $ consider each line as an independent string.

Using sub() with a Function

The sub() method can either replace each match with a string or with the return value of a specified
function. The function receives the match as an argument and must return a string that will replace
the matched pattern. Here is an example:

Demo 2.1: regular-expressions/Demos/clean_cusses.py

import re1.
import random2.

3.
def clean_cuss(match):4.

Get the whole match5.
cuss = match.group(0)6.
Generate a random list of characters the length of cuss7.
chars = [random.choice('!@#$%^&*') for letter in cuss]8.
Return the list joined into a string9.
return ''.join(chars)10.

11.
def main():12.

pattern = r'\b[a-z]*(stupid|stinky|darn|shucks|crud|slob)[a-z]*\b'13.
p = re.compile(pattern, re.IGNORECASE|re.MULTILINE)14.
s = """Shucks! What a cruddy day I\'ve had.15.

I spent the whole darn day with my slobbiest16.
friend darning his STINKY socks."""17.

result = p.sub(clean_cuss, s)18.
print(result)19.

20.
main()21.

Reading regular expressions is tricky. You have to think like a computer and parse it part by part:

Word boundary:

\b[a-z]*(stupid|stinky|darn|shucks|crud|slob)[a-z]*\b

0 or more lowercase letters:

\b[a-z]*(stupid|stinky|darn|shucks|crud|slob)[a-z]*\b

64 | LESSON 2: Regular Expressions

EVALUATION COPY: Not to be used in class.

Any one of the words delimited by the pipes (|):

\b[a-z]*(stupid|stinky|darn|shucks|crud|slob)[a-z]*\b

0 or more lowercase letters:

\b[a-z]*(stupid|stinky|darn|shucks|crud|slob)[a-z]*\b

Word boundary:

\b[a-z]*(stupid|stinky|darn|shucks|crud|slob)[a-z]*\b

Notice that we compile the pattern using the re.IGNORECASE and re.MULTILINE flags:

p = re.compile(pattern, re.IGNORECASE|re.MULTILINE)

The following screenshot shows the regular expression matches in pythex.org:

Run the file in the terminal to see that it replaces all those matches with a random string of characters:

LESSON 2: Regular Expressions | 65

EVALUATION COPY: Not to be used in class.

…/regular-expressions/Demos> python clean_cusses.py
@$@$#!! What a !&!#%* day I've had.
I spent the whole &*$* day with my @$@!%$^*^
friend ^&#*&#& his ^!@*#@ socks.

In an earlier lesson (see page 24), we split the text of the U.S. Declaration of Independence on spaces to
create a counter showing which words were used the most often. The resulting list looked like this:

[('PEOPLE', 13), ('STATES', 7), ('SHOULD', 5), ('INDEPENDENT', 5),
('AGAINST', 5), ('GOVERNMENT,', 4), ('ASSENT', 4),
('OTHERS', 4), ('POLITICAL', 3), ('POWERS', 3)]

In the following demo, we use a regular expression to split on any character that is not a capital letter:

Demo 2.2: regular-expressions/Demos/counter_re.py

import re1.
from collections import Counter2.

3.
with open('Declaration_of_Independence.txt') as f:4.

doi = f.read().upper()5.
6.

word_list = [word for word in re.split('[^A-Z]', doi) if len(word) > 5]7.
8.

c = Counter(word_list)9.
print(c.most_common(10))10.

Because we use upper() to convert the whole text to uppercase, we can split on [^A-Z]. If we didn’t
know that there were only uppercase letters, we would have used [^A-Za-z] instead.

The new results are:

[('PEOPLE', 17), ('STATES', 12), ('GOVERNMENT', 7), ('POWERS', 6),
('BRITAIN', 6), ('SHOULD', 5), ('COLONIES', 5), ('INDEPENDENT', 5),
('AGAINST', 5), ('MANKIND', 4)]

66 | LESSON 2: Regular Expressions

EVALUATION COPY: Not to be used in class.

 Exercise 6: Green Glass Door
 20 to 30 minutes

In this exercise, you will modify a function so that it uses a regular expression. But first, a little riddle:

The following items can pass through the green glass door:

1. puddles

2. mommies

3. aardvarks

4. balloons

The following items cannot pass through the green glass door:

1. ponds

2. moms

3. anteaters

4. kites

Knowing that, which of the following can pass through the green glass door?

1. bananas

2. apples

3. pears

4. grapes

5. cherries

Did you figure it out? The two that can pass are apples and cherries. Any word with a double letter
can pass through the green glass door.

Now, take a look at the following code:

LESSON 2: Regular Expressions | 67

EVALUATION COPY: Not to be used in class.

Exercise Code 6.1: regular-expressions/Exercises/green_glass_door.py

def green_glass_door(word):1.
prev_letter = ''2.
for letter in word:3.

letter = letter.upper()4.
if letter == prev_letter:5.

return True6.
prev_letter = letter7.

return False8.
9.

fruits = ['banana', 'apple', 'pear', 'grape', 'cherry',10.
'persimmons', 'orange', 'passion fruit']11.

12.
for fruit in fruits:13.

if green_glass_door(fruit):14.
print(f'YES! {fruit} can pass through the green glass door.')15.

else:16.
print(f'NO! {fruit} cannot pass through the green glass door.')17.

Study the code, paying particular attention to the green_glass_door() function. Your job is to
rewrite that function to use a regular expression. Don’t forget to import re.

68 | LESSON 2: Regular Expressions

EVALUATION COPY: Not to be used in class.

LESSON 2: Regular Expressions | 69

EVALUATION COPY: Not to be used in class.

Solution: regular-expressions/Solutions/green_glass_door.py

import re1.
2.

def green_glass_door(word):3.
pattern = re.compile(r'(.)\1')4.
return pattern.search(word)5.

6.
fruits = ['banana', 'apple', 'pear', 'grape', 'cherry',7.

'persimmons', 'orange', 'passion fruit']8.
9.

for fruit in fruits:10.
if green_glass_door(fruit):11.

print(f'YES! {fruit} can pass through the green glass door.')12.
else:13.

print(f'NO! {fruit} cannot pass through the green glass door.')14.

The first part of the pattern matches any character. It uses parentheses to create a group:

pattern = re.compile(r'(.)\1')

The second part of the pattern uses a backreference to match the first group: that is, the character
matched by (.):

pattern = re.compile(r'(.)\1')

The function then returns the result of searching the string for that pattern:

return pattern.search(word)

That will either return a Match object, which evaluates to True, or it will return None, which evaluates
to False.

Conclusion

In this lesson, you have learned how to work with regular expressions in Python. To learn more about
regular expressions, see Python’s Regular Expression HOWTO
(https://docs.python.org/3/howto/regex.html).

70 | LESSON 2: Regular Expressions

EVALUATION COPY: Not to be used in class.

https://docs.python.org/3/howto/regex.html
https://docs.python.org/3/howto/regex.html

LESSON 3
Working with Data

EVALUATION COPY: Not to be used in class.

Topics Covered

 Data stored in a relational database.

 Data stored in a CSV file.

 Data from a web page.

 HTML, XML, and JSON.

 Accessing an API.

Introduction

Data is stored in many different places and in many different ways. In this lesson, you’ll learn about
the Python modules that help you access data.

EVALUATION COPY: Not to be used in class.

❋

3.1. Virtual Environment

In this lesson, you will be installing some libraries. So as not to mess up your standard environment,
you should create a virtual environment and work within it the entire lesson:

1. Open a terminal at working-with-data and run the following command:

…/Python/working-with-data> python -m venv .venv

This will create and populate a new .venv directory.

LESSON 3: Working with Data | 71

EVALUATION COPY: Not to be used in class.

2. Activate the new virtual environment:

Windows

.venv/Scripts/activate

Mac / Linux

source .venv/bin/activate

Your prompt should now be prefaced with “(.venv)”.

3. Throughout this lesson, you should work in the virtual directory. So, if you deactivate it to
do other work (or play), be sure to reactivate it when you’re ready to proceed.

EVALUATION COPY: Not to be used in class.

❋

3.2. Relational Databases

In this lesson, we will be working with MySQL and SQLite, but Python is able to connect to all the
commonly used databases, including PostgreSQL, Microsoft SQL Server, and Oracle. All
implementations for working with different relational databases should follow PEP 0249 -- Python
Database API Specification v2.04, which we will describe shortly.

SQL

SQL stands for Structured Query Language and is pronounced either ess-que-el or sequel. It is
the language used by relational database management systems (RDBMS) to access and manipulate
data and to create, structure, and destroy databases and database objects. In this lesson, we will
mostly be concerned with SELECT statements. SELECT statements are used to pull data out of
one or more database tables. The basic syntax is as follows:

SELECT column_name, column_name, column_name, …
FROM table_name
WHERE conditions
ORDER BY column_name
LIMIT NUM;

4. https://www.python.org/dev/peps/pep-0249/

72 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

https://www.python.org/dev/peps/pep-0249/
https://www.python.org/dev/peps/pep-0249/
https://www.python.org/dev/peps/pep-0249/

If you are new to SQL, focus on the column names after the SELECT keyword. Those are the
variable names that Python will use to access the data.

We will also use CREATE TABLE and INSERT statements to create tables and insert data into
them. Don’t worry too much about that SQL. The important thing to know is that Python is
sending the statements to the database to be executed.

 3.2.1. Lahman’s Baseball Database

The database we will use for our examples is Lahman’s Baseball Database5, which includes a huge
amount of data on Major League Baseball from 1871 to the present.

We have a hosted version of the MySQL database on Amazon. The connection information is as
follows:

host: lahman.csw1rmup8ri6.us-east-1.rds.amazonaws.com
user: python
password: python
database: lahmansbaseballdb

Local Version of the MySQL Database

If you have MySQL installed locally and wish to create a local version of the MySQL database,
see https://github.com/WebucatorTraining/lahman-baseball-mysql for instructions.

We will be using Oracle’s mysql-connector-python6 to connect Python to MySQL. Install
mysql-connector-python in your virtual environment by running:

pip install mysql-connector-python

5. https://www.seanlahman.com/baseball-archive/statistics/
6. https://pypi.org/project/mysql-connector-python/

LESSON 3: Working with Data | 73

EVALUATION COPY: Not to be used in class.

https://www.seanlahman.com/baseball-archive/statistics/
https://github.com/WebucatorTraining/lahman-baseball-mysql
https://pypi.org/project/mysql-connector-python/
https://www.seanlahman.com/baseball-archive/statistics/
https://pypi.org/project/mysql-connector-python/

 3.2.2. PEP7 0249 -- Python Database API Specification v2.0

PEP 0249 defines an API for Python interfaces that work with databases. Generally, you follow the
following steps to pull data from a database (be sure to open a Python terminal and follow along):

1. Import a Python Database API-2.0-compliant interface.

import mysql.connector

2. Open a connection to the database.

connection = mysql.connector.connect(
host='lahman.csw1rmup8ri6.us-east-1.rds.amazonaws.com',
user='python',
passwd='python',
db='lahmansbaseballdb'

)

3. Write your query. For example, this query will get the first and last names, weight, and year
of debut for the heaviest five people in the people table:

query = """SELECT nameFirst, nameLast, weight, year(debut)
FROM people
ORDER BY weight DESC
LIMIT 5

"""

4. Create a cursor for the connection:

cursor = connection.cursor()

5. Use the cursor to execute one or more queries:

cursor.execute(query)

6. Get the results of the query/queries from the cursor:

results = cursor.fetchall()

7. PEP stands for Python Enhancement Proposal.

74 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

7. Do something with the results. Here we just output the results:

results

8. Close the cursor:

cursor.close()

9. Close the connection to the database:

connection.close()

Here is the complete code:

Demo 3.1: working-with-data/Demos/fetch_all.py

Be sure to install via pip install mysql-connector-python1.
import mysql.connector2.

3.
connection = mysql.connector.connect(4.

host='lahman.csw1rmup8ri6.us-east-1.rds.amazonaws.com',5.
user='python',6.
passwd='python',7.
db='lahmansbaseballdb'8.

)9.
10.

query = """SELECT nameFirst, nameLast, weight, year(debut)11.
FROM people12.
ORDER BY weight DESC13.
LIMIT 5"""14.

15.
cursor = connection.cursor()16.
cursor.execute(query)17.
results = cursor.fetchall()18.

19.
cursor.close()20.
connection.close()21.

22.
print(results)23.

This will output a list of tuples, one tuple for each record returned:

LESSON 3: Working with Data | 75

EVALUATION COPY: Not to be used in class.

[
('Walter', 'Young', 320, 2005),
('Jumbo', 'Diaz', 315, 2014),
('CC', 'Sabathia', 300, 2001),
('Dmitri', 'Young', 295, 1996),
('Jumbo', 'Brown', 295, 1925)
]

Cursor Methods

These are the most common cursor methods:

1. cursor.execute(operation [, parameters]) – Prepares and executes a database query
or command. The returned value varies by implementation.

2. cursor.executemany(operation, seq_of_parameters) – Prepares a database query or
command and executes it once for each item in seq_of_parameters. This is usually used
for INSERT and UPDATE statements, not for queries that return result sets. The returned value
varies by implementation.

3. cursor.fetchone() – Fetches the next row of a result set. Returns a single row of data.

4. cursor.fetchmany(n=cursor.arraysize) – Fetches the next n rows of a result set.
cursor.arraysize defaults to 1. Returns a list of data rows.

5. cursor.fetchall() – Fetches all data rows of a result set. Returns a list of data rows.

When to Use fetchone()

As a general rule, after executing a SELECT statement, you will use cursor.fetchall() to fetch all
the results. If you want a limited number of records, you should use SQL to set that limit.

One exception to this rule is when you know you are just getting one record from the database. In the
following example, we limit the number of records to one by selecting on the primary key field:

76 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

Demo 3.2: working-with-data/Demos/fetch_one.py

import mysql.connector1.
2.

connection = mysql.connector.connect(3.
host='lahman.csw1rmup8ri6.us-east-1.rds.amazonaws.com',4.
user='python',5.
passwd='python',6.
db='lahmansbaseballdb'7.

)8.
9.

query = """SELECT nameFirst, nameLast, birthCity, birthState, birthYear10.
FROM people11.
WHERE playerID = 'jeterde01';"""12.

13.
cursor = connection.cursor()14.
cursor.execute(query)15.
result = cursor.fetchone()16.

17.
if result:18.

player_name = result[0] + ' ' + result[1]19.
birth_place = result[2] + ', ' + result[3]20.
birth_year = result[4]21.
print(f'{player_name} was born in {birth_place} in {birth_year}.')22.

else:23.
print('No records returned.')24.

25.
cursor.close()26.
connection.close()27.

The result is a single tuple, which we use to create more meaningfully named variables, and then output:

Derek Jeter was born in Pequannock, NJ in 1974.

Notice that we use an if condition to check to make sure a result was returned just in case there are
no players in the people table with that playerID.

 3.2.3. Returning Dictionaries instead of Tuples

According to PEP 0249, the cursor fetch methods must return a single sequence of values (for one row)
or a sequence of sequences (for multiple rows). By default, mysql-connector-python returns a tuple
(for fetchone()) and a list of tuples (for fetchmany() and fetchall()), but you can change the
cursor type to a dictionary by passing in dictionary=True to the cursor() method:

LESSON 3: Working with Data | 77

EVALUATION COPY: Not to be used in class.

cursor = connection.cursor(dictionary=True)

For the query getting the five heaviest baseball players of all time, this would change the result from a
list of tuples to a list of dictionaries. Give it a try:

1. Open working-with-data/Demos/fetch_all.py in your editor.

2. Pass dictionary=True to the connection.cursor() method:

cursor = connection.cursor(dictionary=True)

78 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

3. Run the file. It will output something like this (though not laid out so nicely8):

[
{

'nameFirst': 'Walter',
'nameLast': 'Young',
'weight': 320,
'year(debut)': 2005

},
{

'nameFirst': 'Jumbo',
'nameLast': 'Diaz',
'weight': 315,
'year(debut)': 2014

},
{

'nameFirst': 'CC',
'nameLast': 'Sabathia',
'weight': 300,
'year(debut)': 2001

},
{

'nameFirst': 'Dmitri',
'nameLast': 'Young',
'weight': 295,
'year(debut)': 1996

},
{

'nameFirst': 'Jumbo',
'nameLast': 'Brown',
'weight': 295,
'year(debut)': 1925

}
]

A big advantage of having the data returned as dictionaries is that you can then reference the columns
by name instead of by position. The code in the following file illustrates this:

8. Check out the pprint library at https://docs.python.org/3/library/pprint.html to see how you can pretty print data
results. We have an example at working-with-data/Demos/pretty_print.py.

LESSON 3: Working with Data | 79

EVALUATION COPY: Not to be used in class.

https://docs.python.org/3/library/pprint.html

Demo 3.3: working-with-data/Demos/fetch_one_as_dict.py

-------Lines 1 through 9 Omitted-------
query = """SELECT nameFirst, nameLast, birthCity, birthState, birthYear10.

FROM people11.
WHERE playerID = 'jeterde01';"""12.

13.
cursor = connection.cursor(dictionary=True)14.
cursor.execute(query)15.
result = cursor.fetchone()16.

17.
if result:18.

player_name = result['nameFirst'] + ' ' + result['nameLast']19.
birth_place = result['birthCity'] + ', ' + result['birthState']20.
birth_year = result['birthYear']21.
print(f'{player_name} was born in {birth_place} in {birth_year}.')22.

-------Lines 23 through 27 Omitted-------

Notice that we can reference the columns as result['nameFirst'], result['nameLast'], etc.
That’s much more readable than result[0], result[1], etc.

EVALUATION COPY: Not to be used in class.

❋

3.3. Passing Parameters

Often, your Python code won’t know some of the values in the SQL query until execution time. For
example, we could write a program that allowed users to find out which five players had the most home
runs in a given year. The SQL query for that would look like this:

SELECT p.nameFirst, p.nameLast, b.HR, t.name AS team, b.yearID
FROM batting b

JOIN people p ON p.playerID = b.playerID
JOIN teams t ON t.ID = b.team_ID

WHERE b.yearID = 1950
ORDER BY b.HR DESC
LIMIT 5;

But we need to make the year a variable.

80 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

The Wrong Way

You might be tempted to do this with a Python variable like this:

Don’t do this!

year_id = int(input('Enter a year: '))

query = """SELECT p.nameFirst, p.nameLast, b.HR, t.name AS team, b.yearID
FROM batting b

JOIN people p ON p.playerID = b.playerID
JOIN teams t ON t.ID = b.team_ID

WHERE b.yearID = {year_id}
ORDER BY b.HR DESC
LIMIT 5;"""

In this case, Python creates the whole query as a string and sends it to the database to run.

There are multiple problems with the above approach, but the biggest one is that it opens the database
to hacking. A savvy and nefarious person could try to pass in a value to year_id that ended one query
and started another that either sought to extract extra data (e.g., passwords) from the database or tried
to wreak havoc on your database by updating or deleting records.

The Right Way

The right way to construct a SQL query is to pass parameters to the database and let it do the work of
constructing the query. This is beneficial for at least a couple of reasons:

1. It mitigates the security risk. The database can check the passed-in parameters to make sure
that they match the data types of the corresponding columns. Any code that tried to end one
query and start another would get rejected.

2. It allows the database to compile the query so that it can reuse it with different passed-in
parameters without recompiling every time.

Different databases use different placeholders for parameters:

1. MySQL and PostgreSQL use %s.

2. Oracle9 uses a : followed by a variable name or index.

3. SQL Server and SQLite use a ?.

9. https://cx-oracle.readthedocs.io/en/latest/user_guide/bind.html

LESSON 3: Working with Data | 81

EVALUATION COPY: Not to be used in class.

https://cx-oracle.readthedocs.io/en/latest/user_guide/bind.html
https://cx-oracle.readthedocs.io/en/latest/user_guide/bind.html

The following demo uses MySQL:

Demo 3.4: working-with-data/Demos/homerun_leaders_mysql.py

import mysql.connector1.
2.

def main():3.
connection = mysql.connector.connect(4.

host='lahman.csw1rmup8ri6.us-east-1.rds.amazonaws.com',5.
user='python',6.
passwd='python',7.
db='lahmansbaseballdb'8.

)9.
10.

cursor = connection.cursor(prepared=True)11.
12.

query = """SELECT p.nameFirst, p.nameLast, b.HR,13.
t.name AS team, b.yearID14.

FROM batting b15.
JOIN people p ON p.playerID = b.playerID16.
JOIN teams t ON t.ID = b.team_ID17.

WHERE b.yearID = %s18.
ORDER BY b.HR DESC19.
LIMIT 5;"""20.

21.
checking = True22.
while checking:23.

year_id = int(input('Enter a year (0 to quit): '))24.
if year_id == 0:25.

break26.
27.

cursor.execute(query, [year_id])28.
results = cursor.fetchall()29.

30.
for i, result in enumerate(results , 1):31.

row = dict(zip(cursor.column_names, result))32.
name = f"{row['nameFirst']} {row['nameLast']}"33.
print(f"{i}. {name}: {row['HR']}")34.

35.
cursor.close()36.
connection.close()37.

38.
main()39.

Notice the %s parameter on line 18 and how a value for it (year_id) is passed in on line 28:

82 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

cursor.execute(query, [year_id])

Run the program. You will see that it prompts the user repeatedly for a year and then retrieves and
prints out the five leading home-run hitters for that year.

Things to notice:

1. We pass prepared=True to connection.cursor(). This tells MySQL to create a
MySQLCursorPrepared cursor, which is the type of cursor it uses to prepare SQL queries.

2. Unfortunately, you cannot use dictionary=True and prepared=True together, so we zip
the cursor.column_names with each returned result to create a dictionary:

for i, result in enumerate(results , 1):
row = dict(zip(cursor.column_names, result))
name = f"{row['nameFirst']} {row['nameLast']}"
print(f"{i}. {name}: {row['HR']}")

This allows us to access the values by name.

The zip() function was covered in Creating a Dictionary from Two Sequences in the Advanced
Python Concepts lesson (see page 44).

EVALUATION COPY: Not to be used in class.

❋

3.4. SQLite10

SQLite is a server-less SQL database engine. Each SQLite database is stored in a single file that can
easily be transported between computers. While SQLite is not as robust as enterprise relational database
management systems, it works great for local databases or databases that don’t have large loads.

10. See https://docs.python.org/3/library/sqlite3.html for documentation on Python’s sqlite3 library and
https://www.sqlite.org for documentation on SQLite itself.

LESSON 3: Working with Data | 83

EVALUATION COPY: Not to be used in class.

https://docs.python.org/3/library/sqlite3.html
https://www.sqlite.org

Download the SQLite version of the Database

Webucator maintains a SQLite version of Lahman’s Baseball Database at
https://github.com/WebucatorTraining/lahman-baseball-mysql/blob/master/lah
mansbaseballdb.sqlite?raw=true.

Download lahmansbaseballdb.sqlite into the working-with-data/data folder.

Python’s sqlite3 module conforms to PEP 0249.

The following code shows how to create the same home-run-leader program, but this time we connect
to a SQLite database instead of MySQL:

84 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

https://github.com/WebucatorTraining/lahman-baseball-mysql/blob/master/lahmansbaseballdb.sqlite?raw=true
https://github.com/WebucatorTraining/lahman-baseball-mysql/blob/master/lahmansbaseballdb.sqlite?raw=true

Demo 3.5: working-with-data/Demos/homerun_leaders_sqlite.py

import sqlite31.
from pathlib import Path2.

3.
def main():4.

db = Path("../data/lahmansbaseballdb.sqlite")5.
if not db.exists():6.

print(7.
 "You have to download the database from https://github.com/Webucator ↵↵

Training/lahman-baseball-mysql/blob/master/lahmansbase ↵↵
balldb.sqlite?raw=true and save it in the data folder."

8.

)9.
return10.

connection = sqlite3.connect(db)11.
connection.row_factory = sqlite3.Row12.

13.
cursor = connection.cursor()14.

15.
query = """SELECT p.nameFirst, p.nameLast, b.HR,16.

t.name AS team, b.yearID17.
FROM batting b18.

JOIN people p ON p.playerID = b.playerID19.
JOIN teams t ON t.ID = b.team_ID20.

WHERE b.yearID = ?21.
ORDER BY b.HR DESC22.
LIMIT 5;"""23.

24.
checking = True25.
while checking:26.

year_id = int(input('Enter a year (0 to quit): '))27.
if year_id == 0:28.

break29.
30.

cursor.execute(query, [year_id])31.
results = cursor.fetchall()32.

33.
for i, result in enumerate(results , 1):34.

name = f"{result['nameFirst']} {result['nameLast']}"35.
print(f"{i}. {name}: {result['HR']}")36.

37.
cursor.close()38.
connection.close()39.

40.
main()41.

LESSON 3: Working with Data | 85

EVALUATION COPY: Not to be used in class.

Things to notice:

1. We connect to a SQLite database stored in working-with-data/data.

2. By default, data is returned as a tuple, so you have to access values by index. Setting
connection.row_factory to sqlite3.Row allows you to access values in returned records
by column name or index. It is analagous to passing dictionary=True to
connection.cursor() when using mysql-connector-python.

3. SQLite uses question marks as placeholders for parameters.

4. Everything else is done the same as it was done with MySQL.

86 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

 Exercise 7: Querying a SQLite Database
 10 to 15 minutes

In this exercise, you will use your knowledge of PEP 0249 to connect to and query the lahmansbase
balldb.sqlite database.

1. Open working-with-data/Exercises/querying_a_sqlite_database.py in your
editor.

2. The connection to the SQLite database has already been made and the query has been written.
We have also included the following line, which allows you to access the values by column
name:

connection.row_factory = sqlite3.Row

3. Add code that runs the query and assigns the results to the results variable.

4. Print out the results using a for loop, so that it outputs:

Walter Young weighed 320 when he debuted in 2005.
Jumbo Diaz weighed 315 when he debuted in 2014.
CC Sabathia weighed 300 when he debuted in 2001.
Jumbo Brown weighed 295 when he debuted in 1925.
Dmitri Young weighed 295 when he debuted in 1996.

Note that the debut field is returned as a string in the format YYYY-MM-DD. You could use
the datetime module to get at the year, or you can just use slicing.

5. Don’t forget to close your cursor and connection.

LESSON 3: Working with Data | 87

EVALUATION COPY: Not to be used in class.

Solution: working-with-data/Solutions/querying_a_sqlite_database.py

import sqlite31.
connection = sqlite3.connect('../data/lahmansbaseballdb.sqlite')2.
connection.row_factory = sqlite3.Row3.

4.
query = """SELECT nameFirst, nameLast, weight,5.

debut AS debut6.
FROM people7.
ORDER BY weight DESC8.
LIMIT 5"""9.

10.
cursor = connection.cursor()11.
cursor.execute(query)12.
results = cursor.fetchall()13.
cursor.close()14.
connection.close()15.

16.
for result in results:17.

player_name = result['nameFirst'] + ' ' + result['nameLast']18.
weight = result['weight']19.
year = result['debut'][:4]20.
print(f'{player_name} weighed {weight} when he debuted in {year}.')21.

EVALUATION COPY: Not to be used in class.

❋

3.5. SQLite Database in Memory

Python allows you to create in-memory databases with SQLite. This can be useful when you have a
lot of data in a tab-delimited file that you want to query using SQL, but don’t want to maintain as a
database file as well. To create a connection to an in-memory database, use the following code:

connection = sqlite3.connect(':memory:')

In-memory SQLite Database

For the rest of the database section, we will work with an in-memory SQLite database, but the
concepts apply to all databases.

88 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

You then create your tables with CREATE TABLE statements and populate them with INSERT statements.
For example:

Demo 3.6: working-with-data/Demos/sqlite3_in_memory_tables.py

import sqlite31.
connection = sqlite3.connect(':memory:')2.
cursor = connection.cursor()3.

4.
create = """CREATE TABLE beatles (5.

'fname' text,6.
'lname' text,7.
'nickname' text8.

)"""9.
10.

cursor.execute(create)11.
12.

members = [13.
('John', 'Lennon', 'The Smart One'),14.
('Paul', 'McCartney', 'The Cute One'),15.
('George', 'Harrison', 'The Funny One'),16.
('Ringo', 'Starr', 'The Quiet One')17.

]18.
19.

insert = 'INSERT INTO beatles VALUES (?, ?, ?)'20.
21.

Loop through the members list, inserting each member22.
for member in members:23.

cursor.execute(insert, member)24.
25.

select = 'SELECT fname, lname, nickname FROM beatles'26.
cursor.execute(select)27.

28.
results = cursor.fetchall()29.
cursor.close()30.
connection.close()31.

32.
print(results)33.

 3.5.1. Executing Multiple Queries at Once

You might have noticed that, to insert the records, we looped through a list of lists, inserting one record
at a time using:

LESSON 3: Working with Data | 89

EVALUATION COPY: Not to be used in class.

cursor.execute(insert, member)

A better way of doing this is to use the executemany() method, which takes two arguments:

1. The query to run, which usually includes some placeholders to replace with passed-in values.

2. A sequence of sequences, each of which contains the values with which to replace the
placeholders.

The query will run once for each sequence in the sequence of sequences. Different databases may
implement this in different ways; however, the Python code should work with any database as long as
your using a Python Database API-2.0-compliant interface.

Here is an example:

Demo 3.7: working-with-data/Demos/sqlite3_multiple_queries_at_once.py

-------Lines 1 through 12 Omitted-------
members = [13.

('John', 'Lennon', 'The Smart One'),14.
('Paul', 'McCartney', 'The Cute One'),15.
('George', 'Harrison', 'The Funny One'),16.
('Ringo', 'Starr', 'The Quiet One')17.

]18.
19.

insert = 'INSERT INTO beatles VALUES (?, ?, ?)'20.
cursor.executemany(insert, members)21.
-------Lines 22 through 30 Omitted-------

90 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

 Exercise 8: Inserting File Data into a
Database

 20 to 30 minutes

In this exercise, you will use the data from a text file to populate a database table.

Open working-with-data/data/states.txt in your editor. The file has 52 lines of data (50 states
and Washington, D.C. and Puerto Rico). Each line contains three pieces of data11 separated by tabs:

1. State Name

2. Population in 2020

3. Population in 2000

For example, the line for California reads:

California 39,631,049 37,254,523

Here is the starting code:

11. The state populations are based on data from https://en.wikipedia.org/wiki/List_of_U.S._states_and_territo
ries_by_population. 2020 numbers are extrapolated.

LESSON 3: Working with Data | 91

EVALUATION COPY: Not to be used in class.

https://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_population
https://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_population

Exercise Code 8.1:
working-with-data/Exercises/inserting_file_data_into_a_database.py

import sqlite31.
connection = sqlite3.connect(':memory:')2.
connection.row_factory = sqlite3.Row3.

4.
Create the cursor.5.

6.
create = """CREATE TABLE states (7.

'state' text,8.
'pop2020' integer,9.
'pop2000' integer10.

)"""11.
12.

Execute the create statement.13.
14.

insert = 'INSERT INTO states VALUES (?, ?, ?)'15.
16.

Create a list of tuples from the data in '../data/states.txt'.17.
18.

Insert the data into the database.19.
20.

select = """SELECT state,21.
CAST((pop2020*1.0/pop2000) * pop2020 AS INTEGER) AS pop204022.
FROM states ORDER BY pop2040 DESC"""23.

24.
Execute the select statement.25.

26.
Fetch the rows into a variable.27.

28.
Close the cursor and connection.29.

30.
results = cursor.fetchall()31.
cursor.close()32.
connection.close()33.

34.
Print out the results.35.

Open working-with-data/Exercises/inserting_file_data_into_a_database.py in your
editor. A connection to an in-memory database has already been established and the SQL statements
for creating the table, inserting the records, and selecting the data have been written and stored in
variables.

Your job is to:

92 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

1. Create a cursor.

2. Run the CREATE statement.

3. Get the data from the states.txt file into a list of 52 three-element tuples. Note that you
will have to remove the commas from the population numbers so that they are valid integers.

4. Insert the rows using the list of tuples (i.e., the sequence of sequences) you just created.

5. Run the SELECT statement. This returns two columns: the state and the projected population
in 2040. The column names are state and pop2040.

6. Fetch the results and output a sentence for each row (e.g., “The projected 2040 population
of California is 42,159,177.”).

7. Don’t forget to close your cursor and connection.

LESSON 3: Working with Data | 93

EVALUATION COPY: Not to be used in class.

Solution:
working-with-data/Solutions/inserting_file_data_into_a_database.py

import sqlite31.
connection = sqlite3.connect(':memory:')2.
connection.row_factory = sqlite3.Row3.

4.
cursor = connection.cursor()5.

6.
create = """CREATE TABLE states (7.

'state' text,8.
'pop2020' integer,9.
'pop2000' integer10.

)"""11.
12.

cursor.execute(create)13.
14.

insert = 'INSERT INTO states VALUES (?, ?, ?)'15.
16.

data = []17.
with open('../data/states.txt') as f:18.

for line in f.readlines():19.
state_data = line.split('\t')20.
tpl_state_data = (state_data[0],21.

int(state_data[1].replace(',','')),22.
int(state_data[2].replace(',','')))23.

24.
data.append(tpl_state_data)25.

26.
cursor.executemany(insert, data)27.

28.
select = """SELECT state,29.

CAST((pop2020*1.0/pop2000) * pop2020 AS INTEGER) AS pop204030.
FROM states ORDER BY pop2040 DESC"""31.

32.
cursor.execute(select)33.

34.
results = cursor.fetchall()35.
cursor.close()36.
connection.close()37.

38.
for record in results:39.

state = record['state']40.
pop2040 = record['pop2040']41.
print(f'The projected 2040 population of {state} is {pop2040:,}.')42.

94 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

EVALUATION COPY: Not to be used in class.

❋

3.6. Drivers for Other Databases

We have used mysql-connector-python to connect Python to MySQL and Python’s sqlite3
module to connect to SQLite. We recommend the following drivers for other major databases:

PostgreSQL: psycopg2 (https://pypi.org/project/psycopg2/)

SQL Server: pyodbc (https://pypi.org/project/pyodbc/)

Oracle: cx-Oracle (https://pypi.org/project/cx-Oracle/)

All of these comply with PEP 0249.

EVALUATION COPY: Not to be used in class.

❋

3.7. CSV

CSV (for “Comma Separated Values”) is a format commonly used for sharing data between applications,
in particular, database and spreadsheet applications. Because the format had been around for awhile
before any attempt was made at standardization, not all CSV files use exactly the same format.
Fortunately, Python’s csv module does a good job of handling and hiding these differences so the
programmer generally doesn’t have to worry about them.

Microsoft Excel is perhaps the most common application used for making CSV files. Here is a sample
CSV file (working-with-data/data/population-by-state.csv) in Microsoft Excel showing the
United States population breakdown12 over several years:

12. The population data is from https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-to
tal.html. The 2020 numbers are extrapolated.

LESSON 3: Working with Data | 95

EVALUATION COPY: Not to be used in class.

https://pypi.org/project/psycopg2/
https://pypi.org/project/pyodbc/
https://pypi.org/project/cx-Oracle/
https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html
https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html

Open the CSV file in a text editor and you’ll see this (lines are cut off):

(.venv) …/working-with-data/Demos> python csv_reader.py
State,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020
Alabama,"4,785,437","4,799,069","4,815,588","4,830,081","4,841,79…
Alaska,"713,910","722,128","730,443","737,068","736,283","737,498…
Arizona,"6,407,172","6,472,643","6,554,978","6,632,764","6,730,41…
Arkansas,"2,921,964","2,940,667","2,952,164","2,959,400","2,967,3…
California,"37,319,502","37,638,369","37,948,800","38,260,787","3…
…

Python’s csv module is used for:

1. Reading from a CSV file.

2. Creating a new CSV file.

3. Writing to an existing CSV file.

 3.7.1. Reading from a CSV File

To read data from a CSV file:

1. Open the file using the built-in open() function with newline set to an empty string.

2. Pass the file object to the csv.reader() method.

3. Read the file row by row. Each row is a list of strings.

96 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

Demo 3.8: working-with-data/Demos/csv_reader.py

import csv1.
2.

csv_file = '../data/population-by-state.csv'3.
with open(csv_file, newline='', encoding="utf-8") as csvfile:4.

pops = csv.reader(csvfile)5.
for row in pops:6.

print(', '.join(row))7.

This will output the following (lines are cut off):

(.venv) …/working-with-data/Demos> python csv_dictreader_1.pyState, 2010, 2011, 2012,
2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020
Alabama, 4,785,437, 4,799,069, 4,815,588, 4,830,081, 4,841,799, 4,85…
Alaska, 713,910, 722,128, 730,443, 737,068, 736,283, 737,498, 741,45…
Arizona, 6,407,172, 6,472,643, 6,554,978, 6,632,764, 6,730,413, 6,82…
Arkansas, 2,921,964, 2,940,667, 2,952,164, 2,959,400, 2,967,392, 2,9…
California, 37,319,502, 37,638,369, 37,948,800, 38,260,787, 38,596,9…
…

DictReader

When retrieving rows using the reader() method, it’s possible to manipulate them item by item, but
you have to know the positions of the different fields. For a CSV with a lot of columns, that can be
pretty difficult. You will likely find it easier to use a DictReader, which gives you access to the fields
by key.

For example, in the population CSV, the first column holds the name of the state, and each subsequent
columns holds the population for a given year. The following report shows the growth between 2010
and 2020 for each state.

LESSON 3: Working with Data | 97

EVALUATION COPY: Not to be used in class.

Demo 3.9: working-with-data/Demos/csv_dictreader_1.py

import csv1.
2.

csvfile = '../data/population-by-state.csv'3.
with open(csvfile, newline='', encoding="utf-8") as csvfile:4.

pops = csv.DictReader(csvfile)5.
print('Headers:', pops.fieldnames)6.
for row in pops:7.

Convert to integers8.
pop_2020 = int(row['2020'].replace(',', ''))9.
pop_2010 = int(row['2010'].replace(',', ''))10.

11.
growth = pop_2020 - pop_201012.

13.
Use "," format spec to separate 1000s with commas14.
print(f"{row['State']}: {pop_2020:,} - {pop_2010:,} = {growth:,}")15.

This will output the following:

Headers: ['State', '2010', '2011', '2012', '2013', '2014', '2015', '2016', '2017', '2018',
'2019', '2020']
Alabama: 4,914,833 - 4,785,437 = 129,396
Alaska: 742,866 - 713,910 = 28,956
Arizona: 7,341,977 - 6,407,172 = 934,805
Arkansas: 3,030,315 - 2,921,964 = 108,351
California: 40,037,709 - 37,319,502 = 2,718,207
…

Things to notice:

1. csv.DictReader objects have a fieldnames property that contains a list holding the keys
taken from the first row of data.

2. We use the replace() method of strings to get rid of the commas in the population numbers
and then we int() the result.

3. When we print the result, we add the commas back in using formatting.

98 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

fieldnames

By default the fieldnames property of csv.DictReader objects contains a list holding the keys taken
from the first row of data. If the CSV doesn’t have a header row, you can pass fieldnames in when
creating the DictReader:

fieldnames = ['State', '2010', '2011', '2012', '2013', '2014',
'2015', '2016', '2017', '2018', '2019', '2020']

pops = csv.DictReader(csvfile, fieldnames)

Getting CSV Data as a List

Review the following Python code:

Demo 3.10: working-with-data/Demos/csv_dictreader_2.py

import csv1.
2.

def get_data_from_csv(csvfile):3.
with open(csvfile, newline='', encoding="utf-8") as csvfile:4.

data = csv.DictReader(csvfile)5.
return data6.

7.
def main():8.

data = get_data_from_csv('../data/population-by-state.csv')9.
10.

for row in data:11.
print(row['State'])12.

13.
main()14.

What do you expect to happen? Clearly, the intention is to print all the states in the “State” column
of the CSV, but instead the code will error:

ValueError: I/O operation on closed file.

The reason it errors is that files opened using with are automatically closed at the end of the with
block. An effective way of dealing with this issue is to convert the csv.DictReader object to a list
and return that instead:

LESSON 3: Working with Data | 99

EVALUATION COPY: Not to be used in class.

Demo 3.11: working-with-data/Demos/csv_dictreader_3.py

import csv1.
2.

def get_data_as_list_from_csv(csvfile):3.
with open(csvfile, newline='', encoding="utf-8") as csvfile:4.

data = csv.DictReader(csvfile)5.
return list(data)6.

7.
def main():8.

data = get_data_as_list_from_csv('../data/population-by-state.csv')9.
10.

for row in data:11.
print(row['State'])12.

13.
main()14.

100 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

 Exercise 9: Finding Data in a CSV File
 20 to 30 minutes

In this exercise, you will use your knowledge of Python lists and dictionaries to search data in a CSV
file.

1. Create a new file and save it as csv_search.py in working-with-data/Exercises.

2. Write code that prompts the user for a state name and a year between 2010 and 2020 and
then returns the population of that state in that year. The program should work like this:

…/working-with-data/Exercises> python csv_search.py
State: New York
Year: 2020
New York's population in 2020: 19,588,068.

3. The code in working-with-data/Demos/csv_dictreader_3.py should serve as a good
reference / starting point.

LESSON 3: Working with Data | 101

EVALUATION COPY: Not to be used in class.

Solution: working-with-data/Solutions/csv_search.py

import csv1.
2.

def get_data_as_list_from_csv(csvfile):3.
with open(csvfile, newline='', encoding="utf-8") as csvfile:4.

data = csv.DictReader(csvfile)5.
return list(data)6.

7.
def get_population(data, state, year):8.

Loop through data9.
for row in data:10.

Is this the row that matches the passed-in state?11.
if row['State'] == state:12.

Return the value for the column for the passed in year13.
return row[year]14.

return None # No matching state found15.
16.

def main():17.
data = get_data_as_list_from_csv('../data/population-by-state.csv')18.
state = input('State name: ')19.
year = input('Year between 2010 and 2020: ')20.
population = get_population(data, state, year)21.
if population:22.

print(f'{state}\'s population in {year}: {population}.')23.
else:24.

print(f'No state found matching "{state}".')25.
26.

main()27.

EVALUATION COPY: Not to be used in class.

❋

3.8. Creating a New CSV File

 3.8.1. Writer

To write data to a CSV file using a Writer object:

102 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

1. Open the file using the built-in open() function in writing mode and with newline set to
an empty string:

with open('../csvs/mlb-weight-over-time.csv', 'w', newline='') as csvfile:

2. Pass the file object to the csv.writer() method:

writer = csv.writer(csvfile)

3. Write the file row by row with the writerow(sequence) method or all at once with the
writerows(sequence_of_sequences) method.

Note that the sequences mapping to rows may only contain strings and numbers.

The following example shows how you could write data retrieved from a database into a CSV file:

LESSON 3: Working with Data | 103

EVALUATION COPY: Not to be used in class.

Demo 3.12: working-with-data/Demos/csv_writer.py

import mysql.connector1.
import csv2.

3.
connection = mysql.connector.connect(4.

host='lahman.csw1rmup8ri6.us-east-1.rds.amazonaws.com',5.
user='python',6.
passwd='python',7.
db='lahmansbaseballdb'8.

)9.
10.

query = """SELECT year(debut) AS year, avg(weight) AS weight11.
FROM people12.
WHERE debut is NOT NULL13.
GROUP BY year(debut)14.
ORDER BY year(debut)"""15.

16.
cursor = connection.cursor()17.
cursor.execute(query)18.
results = cursor.fetchall()19.

20.
cursor.close()21.
connection.close()22.

23.
csv_file = '../data/mlb-weight-over-time.csv'24.
with open(csv_file, 'w', newline='', encoding='utf-8') as csvfile:25.

writer = csv.writer(csvfile)26.
writer.writerow(['Year', 'Weight'])27.
writer.writerows(results)28.

 3.8.2. DictWriter

csv.DictWriter() works like csv.writer() except that instead of mapping lists onto rows, it maps
dictionaries onto rows. As such, it requires a second argument: fieldnames, which it uses to determine
the order in which the dictionary values get mapped. To illustrate this, let’s look at a very simple
example:

104 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

Demo 3.13: working-with-data/Demos/csv_dictwriter_1.py

import csv1.
2.

grades = [3.
{4.

"English": 97,5.
"Math": 93,6.
"Art": 74,7.
"Music": 868.

},9.
{10.

"English": 89,11.
"Math": 83,12.
"Art": 97,13.
"Music": 9414.

}15.
]16.

17.
csv_file = '../data/grades.csv'18.
with open(csv_file, 'w', newline='', encoding='utf-8') as csvfile:19.

fieldnames = ['Math', 'Art', 'English', 'Music']20.
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)21.
writer.writeheader()22.
writer.writerows(grades)23.

This will create grades.csv with the following contents:

Math,Art,English,Music
93,74,97,86
83,97,89,94

Notice that the order of the fields maps to the fieldnames list.

To get the order of the fields from the first dictionary in the grades list, use:

fieldnames = grades[0].keys()

Try making that change in csv_dictwriter_1.py. After making that change and running the file
again, grades.csv will hold the following contents:

LESSON 3: Working with Data | 105

EVALUATION COPY: Not to be used in class.

English,Math,Art,Music
97,93,74,86
89,83,97,94

Appending to a CSV File

To add lines to an existing CSV file, just open in it in append mode:

Demo 3.14: working-with-data/Demos/csv_dictwriter_2.py

import csv1.
2.

grades = [3.
{4.

"English": 88,5.
"Math": 88,6.
"Art": 88,7.
"Music": 888.

},9.
{10.

"English": 77,11.
"Math": 77,12.
"Art": 77,13.
"Music": 7714.

}15.
]16.

17.
csv_file = '../data/grades.csv'18.
with open(csv_file, 'a', newline='', encoding='utf-8') as csvfile:19.

fieldnames = grades[0].keys()20.
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)21.
writer.writerows(grades)22.

When appending, you don’t need to call writeheader().

106 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

 Exercise 10: Creating a CSV with
DictWriter

 10 to 15 minutes

1. Open working-with-data/Exercises/csv_dictwriter.py in your editor. It contains
the same code we saw in working-with-data/Demos/csv_writer.py

2. Modify the code so that it uses a DictWriter instead of a Writer object.

LESSON 3: Working with Data | 107

EVALUATION COPY: Not to be used in class.

Solution: working-with-data/Solutions/csv_dictwriter.py

import mysql.connector1.
import csv2.

3.
connection = mysql.connector.connect(4.

host='lahman.csw1rmup8ri6.us-east-1.rds.amazonaws.com',5.
user='python',6.
passwd='python',7.
db='lahmansbaseballdb'8.

)9.
10.

query = """SELECT year(debut) AS year, avg(weight) AS weight11.
FROM people12.
WHERE debut is NOT NULL13.
GROUP BY year(debut)14.
ORDER BY year(debut)"""15.

16.
cursor = connection.cursor(dictionary=True)17.
cursor.execute(query)18.
results = cursor.fetchall()19.

20.
cursor.close()21.
connection.close()22.

23.
csv_file = '../data/mlb-weight-over-time.csv'24.
with open(csv_file, 'w', newline='', encoding='utf-8') as csvfile:25.

fieldnames = results[0].keys()26.
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)27.
writer.writeheader()28.
writer.writerows(results)29.

EVALUATION COPY: Not to be used in class.

❋

108 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

3.9. Getting Data from the Web

 3.9.1. The Requests Package

Python has a built-in urllib module for making HTTP requests, but the Requests13 package is far
more developer-friendly. In this section, you’ll learn how the Requests package works and how to
combine it with the Beautiful Soup14 library to parse the code.

The first thing is to install the Requests package. With your virtual environment activated, run:

pip install requests

Although all HTTP request methods (e.g., post, put, head,…) can be used, in most cases, you will
use the get method using requests.get(), to which you will pass in the URL as a string like this:

Demo 3.15: working-with-data/Demos/using_requests.py

import requests1.
2.

url = 'https://static.webucator.com/media/public/documents/hrleaders.html'3.
r = requests.get(url)4.
content = r.text5.
print(content[:125]) # print first 125 characters6.

This will grab all the content from the web page at https://static.webucator.com/media/pub
lic/documents/hrleaders.html and print out the first 125 characters. The result will be something
like:

<!DOCTYPE html>
<html lang="en">
<head>
<title>Home Run Leaders</title>
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.

To see where this code is coming from…

13. https://requests.readthedocs.io/en/latest/
14. https://www.crummy.com/software/BeautifulSoup/bs4/doc/

LESSON 3: Working with Data | 109

EVALUATION COPY: Not to be used in class.

https://requests.readthedocs.io/en/latest/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://requests.readthedocs.io/en/latest/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

1. Navigate to https://static.webucator.com/media/public/documents/hrlead
ers.html in your web browser.

2. Right-click the page and select View page source or View source. You should see something
like:

This is the code returned by the web server that the browser uses to draw the web page. Notice
that the page begins with the text that our script output.

Custom Headers

A web server might choose to block any requests that don’t identify the user agent. You may be
able to get around this by passing in headers that include a value for “user-agent”, like this:

110 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

https://static.webucator.com/media/public/documents/hrleaders.html
https://static.webucator.com/media/public/documents/hrleaders.html

r = requests.get(url, headers={'user-agent': 'my-app/0.0.1'})

The text attribute of the response object returned by requests.get() will hold the full code of
the HTML page delivered from the specified URL. In this case the URL is:

https://static.webucator.com/media/public/documents/hrleaders.html.

When viewed in a browser, the page looks like this:

 3.9.2. HTML

Data in web pages is stored in HTML, a relatively simple markup language. Elements of an HTML
page are marked up with tags. For example, a paragraph is started with an opening <p> tag and ended
with a closing </p> tag. The page shown in the previous screenshot displays home-run records in a
table. Each record is in a table row that is marked up like this:

LESSON 3: Working with Data | 111

EVALUATION COPY: Not to be used in class.

https://static.webucator.com/media/public/documents/hrleaders.html

<tr class="steroids-era">
<td>1</td>
<td>Mark McGwire</td>
<td>70</td>
<td>1998</td>
<td>1963-10-01</td>

</tr>

Table rows begin with an opening <tr> tag and end with a closing </tr> tag.

Within table rows, table data cells begin with an opening <td> tag and end with a closing
</td> tag, and table header cells begin with an opening <th> tag and end with a closing
</th> tag.

Tags often have attributes for further defining the element. Attributes usually come in name-value pairs.

Note that attributes only appear in the opening tag, like so:

<tagname att1="value" att2="value">Element content</tagname>

Some of the home-run table rows, like the one just shown, have a class attribute with the value of
“steroids-era”:

<tr class="steroids-era">

It is common to search for elements by tag name and by class.

Writing code to extract data using string manipulation and regular expressions would be quite
challenging. Beautiful Soup to the rescue!

 3.9.3. Beautiful Soup

Beautiful Soup is a Python library for extracting HTML and XML data. It is often used to find specific
content on a web page, a process known as “scraping.”

Install Beautiful Soup in your virtual environment:

pip install beautifulsoup4

112 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

You can choose between several options15 for parsing the HTML content. BeautifulSoup recommends
lxml. Install that as well:

lxml and Case

The lxml parser converts all elements and attributes to lowercase letters, so you should only
search for lowercase tags and attributes.

pip install lxml

To get a feel for how Beautiful Soup works, start up Python in the terminal:

1. The first step is to import Beautiful Soup:

>>> from bs4 import BeautifulSoup

2. Import requests and get some data to work with:

>>> import requests
>>> url = 'https://static.webucator.com/media/public/documents/hrleaders.html'
>>> r = requests.get(url)
>>> content = r.text

3. Using the content of that web page, create a BeautifulSoup object using the lxml parser:

>>> soup = BeautifulSoup(content, 'lxml')

4. Use the find(), find_all(), or select() methods to find the tags you are looking for.

find() returns a single bs4.element.Tag object, which we will just call a Tag
object.

find_all() and select() each return a bs4.element.ResultSet, which is
essentially a list of Tag objects.

The find() and find_all() methods provide a lot of options for finding tags. We’ll use
find_all() to illustrate, but find() works in the same way.

15. https://www.crummy.com/software/BeautifulSoup/bs4/doc/#specifying-the-parser-to-use

LESSON 3: Working with Data | 113

EVALUATION COPY: Not to be used in class.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#specifying-the-parser-to-use
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#specifying-the-parser-to-use

5. Get all the table rows (tr elements) in the content:

>>> trs = soup.find_all('tr')
>>> len(trs)
101

6. Because find_all() is the most common method used, there is a shortcut method for using
it. You can simply treat soup as a method itself, like this:

>>> trs = soup('tr')

Find all the table data cells:

>>> tds = soup('td')
>>> len(tds)
500

7. BeautifulSoup Tag objects can also take the find(), find_all(), and select() methods.
Find all the td elements in the first table row:

>>> first_row = trs[0]
>>> first_row.find_all('td')
[]

There are none, because the first row contains table header elements (<th> tags). Just as we
can treat the main soup object as a method as a shortcut for find_all(), we can treat a Tag
object as a method as well:

>>> first_row('th')
[<th>#</th>, <th>Player</th>, <th>Home runs</th>, <th>Year</th>, <th>Birth ↵↵
day</th>]

114 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

8. As we mentioned earlier, it is common to search for elements by their tag name and class
value. You can pass a value for the class as the second argument of find_all() and find().
The following code would find the first table row with the “steroids-era” class:

>>> soup.find('tr', 'steroids-era')
<tr class="steroids-era">
<td>1</td>
<td>Mark McGwire</td>
<td>70</td>
<td>1998</td>
<td>1963-10-01</td>
</tr>

9. You can also pass in a text argument to search for elements that contain certain text:

>>> ruths = soup.find_all('td', text='Babe Ruth')
>>> len(ruths)
9

10. Use the parent property to get a Tag’s parent Tag:

>>> first_ruth_row = ruths[0].parent
>>> first_ruth_row
<tr>
<td>6</td>
<td>Babe Ruth</td>
<td>60</td>
<td>1927</td>
<td>1895-02-06</td>
</tr>

11. In addition to searching on the text of an element, you can access the text of Tag object using
the text property:

>>> ruth_birth_day = first_ruth_row.find_all('td')[-1].text
>>> ruth_birth_day
'1895-02-06'

LESSON 3: Working with Data | 115

EVALUATION COPY: Not to be used in class.

Other Attributes

In addition to finding elements by name and class value, you can find elements by any of their attributes.
To do so, pass in name-value pairs when you create the soup object. For example, the following code
would get all a elements (HTML links) with a target attribute set to _blank:

soup.find_all('a', target='_blank')

The following file prompts the user for a URL and then searches the web page for links with a target
of “_blank”:

Demo 3.16: working-with-data/Demos/a_blanks.py

import requests1.
from bs4 import BeautifulSoup2.

3.
4.

def get_content():5.
url = input('Enter a URL: ')6.
r = requests.get(url)7.
return r.text8.

9.
def main():10.

content = get_content()11.
soup = BeautifulSoup(content, 'lxml')12.

13.
external_links = soup.find_all('a', target='_blank')14.

15.
found = False16.
for i, link in enumerate(external_links, 1):17.

found = True18.
print(f'{i}. {link}')19.

20.
if not found:21.

print('None found.')22.
23.

main()24.

Run the file and enter the URL of your choice to see if it has any links that target “_blank”.

At the time of this writing, https://www.stackoverflow.com had some such links.

116 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

https://www.stackoverflow.com

Finding Non-Section-508-Compliant Images

Images on HTML pages are created with the tag. People with impaired vision rely on the value
of the img element’s alt attribute to know what the image represents. All img elements on web pages
should include alt attributes with values. You can check whether an attribute is included or not using
a boolean value:

soup.find_all('img', alt=False)

The following file prompts the user for a URL and then searches the web page for img elements with
no alt value:

Demo 3.17: working-with-data/Demos/imgs_wo_alt.py

import requests1.
from bs4 import BeautifulSoup2.

3.
4.

def get_content():5.
url = input('Enter a URL: ')6.
r = requests.get(url)7.
return r.text8.

9.
def main():10.

content = get_content()11.
soup = BeautifulSoup(content, 'lxml')12.

13.
images = soup.find_all('img', alt=False)14.

15.
found = False16.
for i, img in enumerate(images, 1):17.

found = True18.
print(f'{i}. {img}')19.

20.
if not found:21.

print('None found.')22.
23.

main()24.

Run the file and enter the URL of your choice to see if it has any images are missing the alt value.

At the time of this writing, https://www.syracuse.com had some such images.

LESSON 3: Working with Data | 117

EVALUATION COPY: Not to be used in class.

https://www.syracuse.com

 Exercise 11: HTML Scraping
 30 to 45 minutes

In this exercise, you will try to scrape data from the web page at:

https://static.webucator.com/media/public/documents/hrleaders.html

Working in the terminal or in a file, try to find:

1. The last cell of the last row of the table.

2. The number of records that occurred during the steroids era.

3. The name of the player with the most home runs in a single season. Note that the first tr
element contains the column headings in th tags. That tr is contained within a thead element.
The rows with the data in them are all contained within a single tbody element. You want
to get the text in the second cell of the first row in the tbody element. The relevant HTML
segment looks like this:

<tbody>
<tr class="steroids-era">
<td>1</td>
<td>Mark McGwire</td>
<td>70</td>
<td>1998</td>
<td>1963-10-01</td>

</tr>…

4. The most home runs Willie Mays ever got in a season.

5. The list of player names who hit 50 or more home runs in a single season. Do this one in a
Python file. It should print out the player names. There will be 17, beginning with:

1. Mark McGwire
2. Sammy Sosa
3. Roger Maris

118 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

https://static.webucator.com/media/public/documents/hrleaders.html

LESSON 3: Working with Data | 119

EVALUATION COPY: Not to be used in class.

Solution

First, get the BeautifulSoup object:

>>> import requests
>>> from bs4 import BeautifulSoup
>>> url = 'https://static.webucator.com/media/public/documents/hrleaders.html'

>>> r = requests.get(url)
>>> content = r.text
>>> soup = BeautifulSoup(content, 'lxml')

1. The last cell of the last row of the table:

>>> trs = soup.find_all('tr')
>>> trs[-1]('td')[-1]
<td>1936-08-08</td>

2. The number of records that occurred during the steroids era:

>>> len(soup.find_all('tr', 'steroids-era'))
29

3. The name of the player with the most home runs in a single season:

>>> data_container = soup.find('tbody')
>>> first_row = data_container.find('tr')
>>> player_name = first_row.find('td').text
>>> player_name = first_row.find_all('td')[1].text
>>> player_name
'Mark McGwire'

4. The most home runs Willie Mays ever got in a season:

>>> mays_first_td = soup.find('td', text='Willie Mays')
>>> mays_hr_record = mays_first_td.parent.find_all('td')[2].text
>>> mays_hr_record
'52'

5. The number of players who hit 50 or more home runs in a single season: See the following
file:

120 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

Solution: working-with-data/Solutions/fifty_hrs.py

import requests1.
from bs4 import BeautifulSoup2.

3.
Constants to express which content is in which cells4.
NUM = 05.
PLAYER = 16.
HRS = 27.
YEAR = 38.
BIRTH_DAY = 49.

10.
def get_content():11.

url = 'https://static.webucator.com/media/public/documents/hrleaders.html'12.
r = requests.get(url)13.
return r.text14.

15.
def get_soup(content):16.

return BeautifulSoup(content, 'lxml')17.
18.

def get_players(soup):19.
data_container = soup.find('tbody')20.

21.
Get all table rows in the tbody22.
rows = data_container.find_all('tr')23.

24.
players = []25.
Loop through the rows26.
for row in rows:27.

Get int value of HRS text28.
hrs = int(row.find_all('td')[HRS].text)29.
if hrs >= 50:30.

player = row.find_all('td')[PLAYER].text31.
Add the name of the player to players32.
but only if they're not already in there33.
if player not in players:34.

players.append(player)35.
if hrs < 50:36.

return players # No need to keep looking37.
38.

return players # Just in case all have 50 or more hrs39.
40.

def main():41.
content = get_content()42.
soup = get_soup(content)43.
players = get_players(soup)44.

LESSON 3: Working with Data | 121

EVALUATION COPY: Not to be used in class.

45.
for i, player in enumerate(players, 1):46.

print(f'{i}. {player}')47.
48.

main()49.

EVALUATION COPY: Not to be used in class.

❋

3.10. XML

XML (eXtensible Markup Language) is a meta-language; that is, it is a language in which other languages
are created. In XML, data is "marked up" with tags, similar to HTML tags. In fact, one version of
HTML, called XHTML, is an XML-based language, which means that XHTML follows the syntax
rules of XML.

XML is used to store data or information; this data might be intended to be read by people or by
machines. It can be highly structured data such as data typically stored in databases or spreadsheets, or
loosely structured data, such as data stored in letters or manuals.

Beautiful Soup is also used to parse XML documents. lxml is the recommended parser for parsing
XML as well as HTML:

soup = BeautifulSoup(content, 'lxml')

The home-runs page we have been working with has an XML version at:

https://static.webucator.com/media/public/documents/hrleaders.xml

The XML for the page contains record elements, an abridged version of which is shown here:

122 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

https://static.webucator.com/media/public/documents/hrleaders.xml

<records>
<record>
<Player>Mark McGwire</Player>
<HR>70</HR>
<Year>1998</Year>
<Birthday>1963-10-01</Birthday>

</record>
<record>
<Player>Sammy Sosa</Player>
<HR>66</HR>
<Year>1998</Year>
<Birthday>1968-11-12</Birthday>

</record>
…

</records>

Note that each player name is stored in the Player tag, but lxml will convert all tags and attributes
to lowercase letters, so we will search for “player”. Here is the code to list all players in the XML file:

Demo 3.18: working-with-data/Demos/soup_xml.py

import requests1.
from bs4 import BeautifulSoup2.

3.
url = 'https://static.webucator.com/media/public/documents/hrleaders.xml'4.
r = requests.get(url)5.
content = r.text6.

7.
soup = BeautifulSoup(content, 'lxml')8.

9.
players = soup.find_all('player')10.
for i, player in enumerate(players, 1):11.

print(f'{i}. {player.text}')12.

EVALUATION COPY: Not to be used in class.

❋

LESSON 3: Working with Data | 123

EVALUATION COPY: Not to be used in class.

3.11. JSON

JSON stands for JavaScript Object Notation. According to the official JSON website16, JSON is:

1. A lightweight data-interchange format.

2. Easy for humans to read and write.

3. Easy for machines to parse and generate.

Numbers 1 and 3 are certainly true. Number 2 depends on the type of human. Experienced Python
programmers will find the JSON syntax extremely familiar as it is uses the same syntax as Python’s
dict and list objects.

Here is an example of JSON holding weather data:

16. https://json.org

124 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

https://json.org
https://json.org

Demo 3.19: working-with-data/data/weather.json

{1.
"list": [{2.
"dt": 1581886800,3.
"main": {4.
"temp": 36.86,5.
"feels_like": 29.97,6.
"temp_min": 33.22,7.
"temp_max": 36.86,8.
"humidity": 989.

},10.
"wind": {11.
"speed": 7.11,12.
"deg": 24313.

},14.
"dt_txt": "2020-02-16 21:00:00"15.

}, {16.
"dt": 1581897600,17.
"main": {18.
"temp": 30.65,19.
"feels_like": 23.94,20.
"temp_min": 27.93,21.
"temp_max": 30.65,22.
"humidity": 9423.

},24.
"wind": {25.
"speed": 4.85,26.
"deg": 25427.

},28.
"dt_txt": "2020-02-17 00:00:00"29.

}],30.
"city": {31.
"id": 5140405,32.
"name": "Syracuse",33.
"country": "US",34.
"population": 145170,35.
"timezone": -18000,36.
"sunrise": 1581854499,37.
"sunset": 158189255938.

}39.
}40.

LESSON 3: Working with Data | 125

EVALUATION COPY: Not to be used in class.

This is a simplified version of the JSON returned from the OpenWeatherMap API’s current weather
data17. As you can see, it is formatted just like a Python dict:

1. The value for the “list” key is a list of dicts, each representing the weather for the subsequent
three-hour period.

2. The value for the “city” key is a dict containing data about the city.

After assigning the dict to a weather variable, you could get the name of the city and the max
temparature for the next period as follows:

city_name = weather['city']['name']
max_temp = weather['list'][0]['main']['temp_max']

Many organizations, including Google, Twitter, Facebook, Reddit, and Microsoft, provide APIs that
return data in JSON.18 Each API has its own rules and parameters. Most, including the
OpenWeatherMap API, require an API key.

Getting an OpenWeatherMap API Key

The OpenWeatherMap API has a free tier, but it requires an API key. To get an API key, sign
up at https://home.openweathermap.org/users/sign_up.

To get the forecast for Syracuse, NY in JSON, go to this URL (replacing yourapikey with a valid API
key):

https://api.openweathermap.org/data/2.5/forecast/?q=Syracuse,New+York,us&units=imperi ↵↵
al&APPID=yourapikey

Notice the parameters passed in the URL:

1. APPID – a valid API key.

2. q: a string in the format:

city_name,state_name,country_code

17. https://api.openweathermap.org/data/2.5/forecast/daily
18. For a list of many JSON APIs, see https://www.programmableweb.com/category/all/apis?data_format=21173.

126 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

https://api.openweathermap.org/data/2.5/forecast/daily
https://api.openweathermap.org/data/2.5/forecast/daily
https://home.openweathermap.org/users/sign_up
https://api.openweathermap.org/data/2.5/forecast/daily
https://www.programmableweb.com/category/all/apis?data_format=21173

3. units: the system of measurement (imperial for fahrenheit, metric for celsius)

The following code uses the API to report the forecasted max temperature in Syracuse, NY for the next
ten days:

Demo 3.20: working-with-data/Demos/weather.py

import requests1.
from datetime import datetime2.

3.
API_KEY = 'abca198b092b0295697beb48914a442c'4.
FEED = 'https://api.openweathermap.org/data/2.5/forecast/'5.

6.
7.

def main():8.
city = 'Syracuse'9.
state = 'New York'10.
country_code = 'us'11.

12.
params = {13.

'q': city + ',' + state + ',' + country_code,14.
'units': 'imperial',15.
'APPID': API_KEY16.

}17.
18.

r = requests.get(FEED, params)19.
print(r.url) # prints the URL created using the params20.

21.
weather = r.json()22.

23.
fmt_in = '%Y-%m-%d %H:%M:%S'24.
fmt_out = '%A, %B %d, %Y at %I %p'25.
for item in weather['list']:26.

max_temp = item['main']['temp_max']27.
dt = item['dt_txt']28.
day_time = datetime.strptime(dt, fmt_in).strftime(fmt_out)29.
print(f'High on {day_time} in {city}: {max_temp} fahrenheit.')30.

31.
main()32.

The json() method of the response from requests.get() converts the JSON code to a Python
dict. From there, you can work with the Python dict object as you normally would.

LESSON 3: Working with Data | 127

EVALUATION COPY: Not to be used in class.

 Exercise 12: JSON Home Runs
 20 to 30 minutes

In this exercise, you will work with the JSON data at the following URL:

https://static.webucator.com/media/public/documents/hrleaders.json

1. Open a new file and save it as hrs_json.py in working-with-data/Exercises.

2. Using the data returned from https://static.webucator.com/media/public/docu
ments/hrleaders.json, write code to print out the number of home runs each player in
the JSON data hit. The first ten results are shown here:

1. Mark McGwire hit 70 home runs in 1998.
2. Sammy Sosa hit 66 home runs in 1998.
3. Mark McGwire hit 65 home runs in 1999.
4. Sammy Sosa hit 63 home runs in 1999.
5. Roger Maris hit 61 home runs in 1961.
6. Babe Ruth hit 60 home runs in 1927.
7. Babe Ruth hit 59 home runs in 1921.
8. Jimmie Foxx hit 58 home runs in 1932.
9. Hank Greenberg hit 58 home runs in 1938.
10. Hack Wilson hit 56 home runs in 1930.

128 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

https://static.webucator.com/media/public/documents/hrleaders.json
https://static.webucator.com/media/public/documents/hrleaders.json
https://static.webucator.com/media/public/documents/hrleaders.json

LESSON 3: Working with Data | 129

EVALUATION COPY: Not to be used in class.

Solution: working-with-data/Solutions/hrs_json.py

import requests1.
2.

data="https://static.webucator.com/media/public/documents/hrleaders.json"3.
4.

r = requests.get(data)5.
records = r.json()6.

7.
for i, record in enumerate(records, 1):8.

player = record['Player']9.
hrs = record['HR']10.
year = record['Year']11.
print(f'{i}. {player} hit {hrs} home runs in {year}.')12.

Don’t forget to deactivate your virtual environment:

deactivate

Conclusion

In this lesson, you have learned to work with data stored in databases, CSV files, HTML, XML, and
JSON.

130 | LESSON 3: Working with Data

EVALUATION COPY: Not to be used in class.

LESSON 4
Testing and Debugging

EVALUATION COPY: Not to be used in class.

Topics Covered

 Testing performance with timers and the timeit module.

 The unittest module.

Introduction

In this lesson, you will learn to test the performance and the functionality of your Python code.

EVALUATION COPY: Not to be used in class.

❋

4.1. Testing for Performance

 4.1.1. time.perf_counter()

The time module includes a perf_counter() method that is used to precisely measure relative times.
The following code illustrates:

Demo 4.1: testing-debugging/Demos/time_diff.py

import time1.
2.

t1 = time.perf_counter()3.
t2 = time.perf_counter()4.
print(t1, t2, t2-t1)5.

LESSON 4: Testing and Debugging | 131

EVALUATION COPY: Not to be used in class.

Note that the value returned by time.perf_counter() is only meaningful when compared to other
values returned by time.perf_counter() at different times. If we run the same file multiple times,
t1 and t2 will have different values, but the time difference between them should be similar:

…/testing-debugging/Demos> python time_diff.py
0.0178728 0.0178734 5.999999999999062e-07
…/testing-debugging/Demos> python time_diff.py
0.0167957 0.0167963 5.999999999999062e-07
…/testing-debugging/Demos> python time_diff.py

Scientific Notation

5.999999999999062e-07 seconds is a very small amount of time. The number is displayed in
scientific notation and is the equivalent of 0.0000005999999999999062. That’s approximately
.00006 milliseconds. If you need to brush up on your scientific notation, check out the short
video at https://youtu.be/JrbvjFqFITI.

The following code shows how to use time.perf_counter() to compare how fast two pieces of code
run:

Demo 4.2: testing-debugging/Demos/compare_code_speed1.py

import random1.
import time2.

3.
start_time = time.perf_counter()4.
numbers = str(random.randint(1, 100))5.
for i in range(1000):6.

num = random.randint(1, 100)7.
numbers += ',' + str(num)8.

end_time = time.perf_counter()9.
td1 = end_time - start_time10.

11.
start_time = time.perf_counter()12.
numbers = [str(random.randint(1, 100)) for i in range(1000)]13.
numbers = ', '.join(numbers)14.
end_time = time.perf_counter()15.
td2 = end_time - start_time16.

17.
print(f"""Time Delta 1: {td1}18.
Time Delta 2: {td2}""")19.

132 | LESSON 4: Testing and Debugging

EVALUATION COPY: Not to be used in class.

https://youtu.be/JrbvjFqFITI

Both snippets of code create strings from 1,000 random numbers between 1 and 100.

1. The first snippet (lines 5-8) uses the += operator to repeatedly append to the numbers string.

2. The second snippet (lines 13-14) uses a list comprehension to create a list of random numbers
and then uses the join() method to convert the list to a string.

We capture the time before and after each code snippet and then print the results. Here are the results
from running it four times:

…/testing-debugging/Demos> python time_diff.py
…/testing-debugging/Demos> python compare_code_speed1.py
Time Delta 1: 0.0011696999999999992
Time Delta 2: 0.0009586000000000004
…/testing-debugging/Demos> python compare_code_speed1.py
Time Delta 1: 0.0011660000000000004
Time Delta 2: 0.0009369000000000009
…/testing-debugging/Demos> python compare_code_speed1.py
Time Delta 1: 0.0011210999999999999
Time Delta 2: 0.0009372999999999986
…/testing-debugging/Demos> python compare_code_speed1.py
Time Delta 1: 0.0011487999999999984
Time Delta 2: 0.0009316000000000012

To get an ever more accurate comparison of the efficiency of the two methods, we can run each snippet
through a loop 1,000 times and then compare the results:

LESSON 4: Testing and Debugging | 133

EVALUATION COPY: Not to be used in class.

Demo 4.3: testing-debugging/Demos/compare_code_speed2.py

import random1.
import time2.

3.
start_time = time.perf_counter()4.
for j in range(1000):5.

numbers = str(random.randint(1, 100))6.
for i in range(1000):7.

num = random.randint(1, 100)8.
numbers += ',' + str(num)9.

end_time = time.perf_counter()10.
td1 = end_time - start_time11.

12.
start_time = time.perf_counter()13.
for j in range(1000):14.

numbers = [str(random.randint(1, 100)) for i in range(1000)]15.
numbers = ', '.join(numbers)16.

end_time = time.perf_counter()17.
td2 = end_time - start_time18.

19.
print(f"""Time Delta 1: {td1}20.
Time Delta 2: {td2}""")21.

Here is the output of this file:

…/testing-debugging/Demos> python compare_code_speed2.py
Time Delta 1: 1.2513799
Time Delta 2: 0.8971576000000001

 4.1.2. The timeit Module

Python comes with a built-in timeit module that does everything we just saw (and more) for you.
The two methods you will use most often are:

1. timeit.timeit()

2. timeit.repeat()

timeit.timeit()

The timeit() method can take multiple parameters, but the most important are:

134 | LESSON 4: Testing and Debugging

EVALUATION COPY: Not to be used in class.

1. stmt – The statement to run.

2. setup – Any code that should be run before the time testing begins. The time it takes to
execute this code will not be included in the results.

3. number – The number of times to run it. This argument is optional, but it defaults to 1000000,
which could take an awful long time to run.

It returns the number of seconds it took to run stmt number times.

Often, you will have to rewrite a piece of code to test it using timeit. One way of doing this is to
create temporary functions to hold the different pieces of code you want to compare. Here’s an example:

Demo 4.4: testing-debugging/Demos/using_timeit1.py

import random1.
from timeit import timeit2.

3.
def string_nums1():4.

numbers = str(random.randint(1, 100))5.
for i in range(1000):6.

num = random.randint(1, 100)7.
numbers += ', ' + str(num)8.

9.
def string_nums2():10.

numbers = [str(random.randint(1, 100)) for i in range(1000)]11.
numbers = ', '.join(numbers)12.

13.
td1 = timeit(string_nums1, number=1000)14.
td2 = timeit(string_nums2, number=1000)15.

16.
print("Results from using timeit()")17.
print(td1, td2, sep="\n")18.
print('-' * 70)19.

20.
print('string_nums1 compared to string_nums2:')21.
print(f'{td1/td2:.2%}')22.

This will show that the string_nums1() function is about 30% less efficient than the string_nums2()
function:

LESSON 4: Testing and Debugging | 135

EVALUATION COPY: Not to be used in class.

…/testing-debugging/Demos> python using_timeit1.py
Results from using timeit()
1.1584021
0.8860760999999997
--
string_nums1 compared to string_nums2:
130.73%

Note that, because the two string_nums functions are both defined in the global namespace, they have
access to the imported random module, so we do not need to import that via the setup parameter.

Namespaces

In Python, a namespace is a names-to-objects mapping. Namespaces are closely related to scope
and are used to distinguish between identically named attributes and variables defined in different
modules. The namespace of the top-level of the running module is globals. And the namespace
of each imported module is the name of that module. Functions defined within a module have
their own local namespaces.

Another way to do this is to place the code you want to test in strings and then import random in the
setup argument, like this:

Demo 4.5: testing-debugging/Demos/using_timeit2.py

from timeit import timeit1.
2.

str_nums1 = """3.
numbers = str(random.randint(1, 100))4.
for i in range(1000):5.

num = random.randint(1, 100)6.
numbers += ', ' + str(num)"""7.

8.
str_nums2 = """9.
numbers = [str(random.randint(1, 100)) for i in range(1000)]10.
numbers = ', '.join(numbers)"""11.

12.
td1 = timeit(str_nums1, number=1000, setup='import random')13.
td2 = timeit(str_nums2, number=1000, setup='import random')14.
-------Lines 15 through 21 Omitted-------

136 | LESSON 4: Testing and Debugging

EVALUATION COPY: Not to be used in class.

In this code, the code in the strings is executed within timeit’s namespace, so we need to use setup
to import random into that namespace.

A third way, as of Python 3.5, is to specify the globals namespace, which will give the code run by
timeit() access to global attributes and imported modules:

Demo 4.6: testing-debugging/Demos/using_timeit3.py

import random1.
from timeit import timeit2.

3.
str_nums1 = """4.
numbers = str(random.randint(1, 100))5.
for i in range(1000):6.

num = random.randint(1, 100)7.
numbers += ', ' + str(num)"""8.

9.
str_nums2 = """10.
numbers = [str(random.randint(1, 100)) for i in range(1000)]11.
numbers = ', '.join(numbers)"""12.

13.
td1 = timeit(str_nums1, number=1000, globals=globals())14.
td2 = timeit(str_nums2, number=1000, globals=globals())15.
-------Lines 16 through 22 Omitted-------

All of these methods are fine and should yield similar results.

timeit.repeat()

The repeat() method is similar to the timeit() method, but it runs the loop multiple times and
returns a list with the results of each repetition. In addition to stmt, setup, and number, the repeat()
method has a repeat parameter, which takes the number of times to repeat the loop. The default value
of repeat is 5.19

Here is the previous example using repeat() instead of timeit():

19. In Python 3.6 and earlier, the default value for repeat was 3.

LESSON 4: Testing and Debugging | 137

EVALUATION COPY: Not to be used in class.

Demo 4.7: testing-debugging/Demos/using_repeat.py

import random1.
from timeit import repeat2.

3.
str_nums1 = """4.
numbers = str(random.randint(1, 100))5.
for i in range(1000):6.

num = random.randint(1, 100)7.
numbers += ', ' + str(num)"""8.

9.
str_nums2 = """10.
numbers = [str(random.randint(1, 100)) for i in range(1000)]11.
numbers = ', '.join(numbers)"""12.

13.
tds1 = repeat(str_nums1, number=1000, repeat=4, globals=globals())14.
tds2 = repeat(str_nums2, number=1000, repeat=4, globals=globals())15.

16.
print("Results from using repeat()")17.
print(tds1, tds2, sep="\n")18.
print('-' * 70)19.

20.
print('str_nums1 compared to str_nums2:')21.
print(f'{sum(tds1)/sum(tds2):.2%}')22.

This will output something like this:

…/testing-debugging/Demos> python using_repeat.py
Results from using repeat()
[1.0138493, 1.302279, 1.1477145000000002, 1.2157394999999998]
[0.8648758000000001, 0.8432685000000006, 0.8369980000000004, 0.8368100000000007]
--
str_nums1 compared to str_nums2:
138.37%

After four iterations of looping through each approach 1,000 times, it’s pretty clear that the second
approach is faster.

Using timeit Interactively

You may find that using timeit() interactively is more convenient for small snippets of code.

Let’s try the code that generates a list of 1,000 random integers in the range of 1 to 100:

138 | LESSON 4: Testing and Debugging

EVALUATION COPY: Not to be used in class.

>>> import random
>>> from timeit import timeit
>>> timeit(', '.join([str(random.randint(1, 100)) for i in range(1000)]))
0.008025599999999855

Your output will likely be slightly different from the output shown above.

LESSON 4: Testing and Debugging | 139

EVALUATION COPY: Not to be used in class.

 Exercise 13: Comparing Times to Execute
 10 to 15 minutes

1. Open testing-debugging/Exercises/compare_code.py in your editor.

2. Notice that the functions use random words rather than receiving a word as a parameter as
they normally would.

3. Write code to compare the time it takes to run the different functions.

Exercise Code 13.1: testing-debugging/Exercises/compare_code.py

import re1.
import random2.

3.
def get_word():4.

words = ['Charlie', 'Woodstock', 'Snoopy', 'Lucy', 'Linus',5.
'Schroeder', 'Patty', 'Sally', 'Marcie']6.

return random.choice(words).upper()7.
8.

def green_glass_door_1():9.
word = get_word()10.
prev_letter = ''11.
for letter in word:12.

letter = letter.upper()13.
if letter == prev_letter:14.

return True15.
prev_letter = letter16.

return False17.
18.

def green_glass_door_2():19.
word = get_word()20.
pattern = re.compile(r'(.)\1')21.
return pattern.search(word)22.

140 | LESSON 4: Testing and Debugging

EVALUATION COPY: Not to be used in class.

LESSON 4: Testing and Debugging | 141

EVALUATION COPY: Not to be used in class.

Solution: testing-debugging/Solutions/compare_code.py

import re1.
import random2.
from timeit import repeat3.

4.
def get_word():5.

words = ['Charlie', 'Woodstock', 'Snoopy', 'Lucy', 'Linus',6.
'Schroeder', 'Patty', 'Sally', 'Marcie']7.

return random.choice(words).upper()8.
9.

def green_glass_door_1():10.
word = get_word()11.
prev_letter = ''12.
for letter in word:13.

letter = letter.upper()14.
if letter == prev_letter:15.

return True16.
prev_letter = letter17.

return False18.
19.

def green_glass_door_2():20.
word = get_word()21.
pattern = re.compile(r'(.)\1')22.
return pattern.search(word)23.

24.
tds1 = repeat(green_glass_door_1, number=1000, repeat=4)25.
tds2 = repeat(green_glass_door_2, number=1000, repeat=4)26.

27.
print(tds1, tds2, sep="\n")28.
print('-' * 70)29.

30.
print('green_glass_door_1 compared to green_glass_door_2:')31.
print('{:.2%}'.format(sum(tds1)/sum(tds2)))32.

Here are our results:

[0.0012243000000000046, 0.0011920000000000056, 0.0011614999999999959, 0.0011576]
[0.0016824000000000006, 0.0017012, 0.0013999999999999985, 0.0017819999999999989]
--
green_glass_door_1 compared to green_glass_door_2:
72.12%

It appears that the regular expression version is less efficient than the other.

142 | LESSON 4: Testing and Debugging

EVALUATION COPY: Not to be used in class.

When Efficiency Matters

You don’t need to test all your code for efficiency. A little bit faster is not always a little bit better,
especially if it comes at the cost of code clarity. We recommend that you follow this procedure:

1. Get your code working.

2. Clean up your code to make it as readable as possible. This includes adding comments.

3. If your code has an efficiency problem, use timeit to identify the source of the problem
and fix it.

This is not to say that you shouldn’t be concerned with efficiency while coding. If you already
know one method is significantly more efficient than another, all else being equal, use the more
efficient method. Just don’t let the quest for efficiency slow you down.

EVALUATION COPY: Not to be used in class.

❋

4.2. The unittest Module

The built-in unittest module provides a framework for writing unit tests by extending the
unittest.TestCase class. It is best understood through an example.

We’ll start with three functions, the third of which has an error:

Demo 4.8: testing-debugging/Demos/functions_error.py

def prepend(s, c):1.
return c + s2.

3.
def append(s, c):4.

return s + c5.
6.

def insert(s, c, pos):7.
return s[0:pos] + c + s[pos:-1] # wrong8.

LESSON 4: Testing and Debugging | 143

EVALUATION COPY: Not to be used in class.

Classes

In this lesson, we will be discussing classes. You will learn to create your own classes in the Classes
and Objects lesson (see page 155). In that lesson, you will write tests for the classes you create.
So, we have a catch 22: it is helpful to understand classes when learning to write tests, but it is
also helpful to understand testing when learning to write classes. Fortunately, you only need to
know a little about classes for the rest of this lesson:

1. Classes are created using the class keyword.

2. Classes are named in upper camel case (e.g., TestCase).

3. Classes generally have methods, which are functions tied to the class.

4. Classes refer to themselves (or rather to the objects they create) as self, and they call
their own methods with self.method_name().

Don’t get hung up on the class syntax for now. Look to understand the methods (functions)
within the class.

To test our functions using the unittest module, we must do the following (at a minimum):

1. Import the unittest module.

2. Create a class that extends unittest.TestCase.

3. Write test methods. Note that the names of the test methods must start with the string “test”.

To run the tests, call unittest.main(), but we only want to do that when we run the test file directly,
so will put it in the following conditional (see page 50):

if __name__ == '__main__':
unittest.main()

Here is a class to test the three functions above along with code to create and run the suite of tests:

144 | LESSON 4: Testing and Debugging

EVALUATION COPY: Not to be used in class.

Demo 4.9: testing-debugging/Demos/unit_test_functions.py

import unittest1.
from functions_error import prepend, append, insert2.

3.
class TestMyMethods(unittest.TestCase):4.

def test_prepend(self):5.
self.assertEqual(prepend('bar', 'foo'), 'foobar')6.

def test_append(self):7.
self.assertEqual(append('bar', 'foo'), 'barfoo')8.

def test_insert(self):9.
self.assertEqual(insert('wetor', 'buca', 2), 'webucator')10.

11.
if __name__ == '__main__':12.

unittest.main()13.

When we run the test suite, we get the following result:

…/testing-debugging/Demos> python unit_test_functions.py
.F.
==
FAIL: test_insert (__main__.TestMyMethods)
--
Traceback (most recent call last):
File ".\unit_test_functions.py", line 10, in test_insert
self.assertEqual(insert('wetor', 'buca', 2), 'webucator')

AssertionError: 'webucato' != 'webucator'
- webucato
+ webucator
? +

--
Ran 3 tests in 0.001s

FAILED (failures=1)

This shows that three tests ran and one failed. And it gives details on the test that failed. Our code
expected insert('wetor', 'buca', 2) to equal “webucator”, but instead it resulted in “webucato”.
That means there is something wrong with our insert() function. Can you fix it?

LESSON 4: Testing and Debugging | 145

EVALUATION COPY: Not to be used in class.

 4.2.1. Unittest Test Files

You can run many test files at once from the command line with the following command:

python -m unittest discover directory_with_tests

That will search the directory_with_tests folder for Python files with names that begin with “test”.
For example, in the testing-debugging/Demos folder, there are two files with helper functions in
them:

1. math_functions.py

2. string_functions.py

Each of these has an associated unit test file:

1. test_math_functions.py

2. test_string_functions.py

All four files are shown here:

Demo 4.10: testing-debugging/Demos/math_functions.py

import math1.
2.

def round_down(f):3.
return int(f) # doesn't work for negative numbers4.

5.
def round_up(f):6.

return math.ceil(f)7.

Note that the int() function does not round down. It strips the decimal portion of the number,
leaving just the integer. For negative numbers, this effectively rounds up (e.g., -5.4 becomes -5). We
should have used math.floor() instead.

146 | LESSON 4: Testing and Debugging

EVALUATION COPY: Not to be used in class.

Demo 4.11: testing-debugging/Demos/string_functions.py

import random1.
import string2.
import re3.

4.
def prepend(s, c):5.

return c + s6.
7.

def append(s, c):8.
return s + c9.

10.
def insert(s, c, pos):11.

return s[0:pos] + c + s[pos:-1] # wrong12.

Recall that s[first_pos:last_pos] returns a slice that starts with the character at first_pos and
includes all the characters up to but not including the character at last_pos. In insert(), we should
have used s[pos:] to get a slice that includes the last character of the original string.

Demo 4.12: testing-debugging/Demos/test_math_functions.py

import unittest1.
from math_functions import *2.

3.
class TestMathFunctions(unittest.TestCase):4.

5.
def test_round_down(self):6.

self.assertEqual(round_down(1.3), 1)7.
self.assertEqual(round_down(-1.3), -2)8.
self.assertEqual(round_down(1.7), 1)9.
self.assertEqual(round_down(-1.7), -2)10.
self.assertEqual(round_down(0), 0)11.

12.
def test_round_up(self):13.

self.assertEqual(round_up(1.3), 2)14.
self.assertEqual(round_up(-1.3), -1)15.
self.assertEqual(round_up(1.7), 2)16.
self.assertEqual(round_up(-1.7), -1)17.
self.assertEqual(round_up(0), 0)18.

19.
if __name__ == '__main__':20.

unittest.main()21.

Notice that this file imports all the functions from the math_functions module.

LESSON 4: Testing and Debugging | 147

EVALUATION COPY: Not to be used in class.

Demo 4.13: testing-debugging/Demos/test_string_functions.py

import unittest1.
from string_functions import *2.

3.
class TestStringFunctions(unittest.TestCase):4.

5.
def test_prepend(self):6.

self.assertEqual(prepend('bar', 'foo'), 'foobar')7.
8.

def test_append(self):9.
self.assertEqual(append('bar', 'foo'), 'barfoo')10.

11.
def test_insert(self):12.

self.assertEqual(insert('wetor', 'buca', 2), 'webucator')13.
14.

if __name__ == '__main__':15.
unittest.main()16.

Notice that this file imports all the functions from the string_functions module.

To discover and run all the unit tests in the testing-debugging/Demos folder, open testing-de
bugging in the terminal and run:

python -m unittest discover Demos

Or, if you want to see a list of all the tests that run, include the -v option, like this:

python -m unittest discover Demos -v

Here are the results with the -v option included (run in Windows PowerShell):

148 | LESSON 4: Testing and Debugging

EVALUATION COPY: Not to be used in class.

…/Python/testing-debugging> python -m unittest discover Demos -v
test_round_down (test_math_functions.TestMathFunctions) ... FAIL
test_round_up (test_math_functions.TestMathFunctions) ... ok
test_append (test_string_functions.TestStringFunctions) ... ok
test_insert (test_string_functions.TestStringFunctions) ... FAIL
test_prepend (test_string_functions.TestStringFunctions) ... ok

==
FAIL: test_round_down (test_math_functions.TestMathFunctions)
--
Traceback (most recent call last):
File "C:\Users\ndunn\OneDrive\Documents\Webucator\Courseware\complete-courses\PYT-

111_print\ClassFiles\testing-debugging\Demos\test_math_functions.py", line 8, in
test_round_down

self.assertEqual(round_down(-1.3), -2)
AssertionError: -1 != -2

==
FAIL: test_insert (test_string_functions.TestStringFunctions)
--
Traceback (most recent call last):
File "C:\Users\ndunn\OneDrive\Documents\Webucator\Courseware\complete-courses\PYT-

111_print\ClassFiles\testing-debugging\Demos\test_string_functions.py", line 13, in
test_insert

self.assertEqual(insert('wetor', 'buca', 2), 'webucator')
AssertionError: 'webucato' != 'webucator'
- webucato
+ webucator
? +

--
Ran 5 tests in 0.007s

FAILED (failures=2)

This shows that five tests were run and two failed.

LESSON 4: Testing and Debugging | 149

EVALUATION COPY: Not to be used in class.

 Exercise 14: Fixing Functions
 10 to 15 minutes

In this exercise, you will correct the functions that failed the unit tests in our demos. The same files
we used in the demos are in the testing-debugging/Exercises folder.

1. At the terminal, run the command to discover and run unit tests in the testing-debug
ging/Exercises folder.

2. Open testing-debugging/Exercises/math_functions.py.

A. Fix the function that failed the unittest.

3. Open testing-debugging/Exercises/string_functions.py.

A. Fix the function that failed the unittest.

4. Run the command to discover and run unit tests again.

5. If any unit tests failed, go back and fix the associated functions.

Challenge

Try writing your own simple function and an associated unit test.

150 | LESSON 4: Testing and Debugging

EVALUATION COPY: Not to be used in class.

LESSON 4: Testing and Debugging | 151

EVALUATION COPY: Not to be used in class.

Solution: testing-debugging/Solutions/string_functions.py

import random1.
import string2.
import re3.

4.
def prepend(s,c):5.

return c + s6.
7.

def append(s,c):8.
return s + c9.

10.
def insert(s,c,pos):11.

return s[0:pos] + c + s[pos:]12.

Solution: testing-debugging/Solutions/math_functions.py

import math1.
2.

def round_down(f):3.
return math.floor(f)4.

5.
def round_up(f):6.

return math.ceil(f)7.

EVALUATION COPY: Not to be used in class.

❋

4.3. Special unittest.TestCase Methods

The unittest.TestCase class includes special setUp() and tearDown() methods that run before
and after each test. You can use them to:

1. Instantiate (and clean up) class instances to use in tests.

2. Open and close files, database connections, network connections, etc.

3. Start and/or stop any server processes needed to run the tests.

These methods (and others like them) create the working environment for the tests. This working
environment is called a fixture. To see how these methods work:

152 | LESSON 4: Testing and Debugging

EVALUATION COPY: Not to be used in class.

1. Open testing-debugging/Demos/beatles/beatles.py in your editor and review the
code.

2. Open testing-debugging/Demos/beatles/test_beatles.py in your editor. Note that
the TestBeatles class contains two test methods:

A. test_select() – checks to make sure the select() method returns a list.

B. test_select_one() – checks to make sure the select() method returns a tuple.

3. The TestBeatles class also contains setUp() and tearDown() methods, which run before
and after each test.

A. The setUp() method instantiates a beatles object and runs the create() and
insert() methods to create and populate the beatles table. It also prints “Setting
up”.

B. The tearDown() method runs the close() method to close the cursor and
connection. It also prints “Tearing down”.

4. Run the test_beatles.py file. It should output the following:

Setting up
Tearing down
.Setting up
Tearing down
.
--
Ran 2 tests in 0.003s

OK

You wouldn’t usually print “Setting up” and “Tearing down”. We do this only to show that the fixture
methods get called once for each test.

 4.3.1. Assert Methods

The assertEqual() method we used in our examples is the most common, but there are many other
assert methods available in TestCase classes, including:

assertNotEqual()

assertTrue()

assertFalse()

LESSON 4: Testing and Debugging | 153

EVALUATION COPY: Not to be used in class.

assertIs()

assertIsNot()

assertIsNone()

assertIsNotNone()

assertIn()

assertNotIn()

assertIsInstance()

assertNotIsInstance()

assertRaises()

See https://docs.python.org/3/library/unittest.html#assert-methods for the full list.

 4.3.2. Additional Setup Methods

The setUpClass() and tearDownClass() methods are used to run code before any of the
tests in a unittest.TestCase class begins and after they all end. These must be implemented
as class methods.

The setUpModule() and tearDownModule() methods are used to run code at the beginning
and end of the module containing test cases. These are module-level functions that are not
part of any unittest.TestCase class. They are usually defined at the top of the module
containing one or more unittest.TestCase classes.

See https://docs.python.org/3/library/unittest.html for full documentation on the unit
testing framework.

Conclusion

In this lesson, you have learned to test the performance of different pieces of code and to create unit
tests to test your Python code.

154 | LESSON 4: Testing and Debugging

EVALUATION COPY: Not to be used in class.

https://docs.python.org/3/library/unittest.html#assert-methods
https://docs.python.org/3/library/unittest.html

LESSON 5
Classes and Objects

EVALUATION COPY: Not to be used in class.

Topics Covered

 Classes and objects in Python.

 Instance methods, class methods, and static methods.

 Properties.

 Decorators.

 Subclasses and inheritance.

Introduction

An object is something that has attributes and/or behaviors, meaning it is certain ways and does certain
things. In the real world, everything could be considered an object. Some objects are tangible, like
rocks, trees, tennis racquets, and tennis players. And some objects are intangible, like words, colors,
tennis swings, and tennis matches. In this lesson, you will learn how to write object-oriented Python
code.

EVALUATION COPY: Not to be used in class.

❋

5.1. Attributes

If you can say “x is y” or “x has y,” then x is an object, and y is an attribute of x. Some examples:

1. The rock that he is holding is heavy. Heavy is an attribute of the specific rock he is holding.
More generally, rocks have weight.

LESSON 5: Classes and Objects | 155

EVALUATION COPY: Not to be used in class.

2. The apple tree in our backyard has four branches. The four branches are attributes of that specific
tree. More generally, trees have branches.

3. Venus Williams’ swing is strong. Strong is an attribute of Venus Williams’ swing. More generally,
tennis swings have a strength.

4. The final match had three sets. The three sets are attributes of the specific match. More generally,
matches have sets.

5. Serena Williams has a first-serve percentage of 57.2%. A 57.2% first-serve percentage is an
attribute of Serena Williams. More generally, tennis players have a first-serve percentage.

Attributes are generally nouns (e.g., branches) or adjectives (e.g., heavy). In Python, we could write
the statements above like this:

rock_he_holds.weight = 'heavy'
backyard_apple_tree.branches = [branch1, branch2, branch3, branch4]
venus.swing = 'strong'
final_match.sets = [set1, set2, set3]
serena.serve1 = .572

EVALUATION COPY: Not to be used in class.

❋

5.2. Behaviors

If you can say “x does” then does is a behavior of x. Some examples of behaviors:

1. The rock falls fast. Rocks can fall.

2. The apple tree in our back yard first bore fruit on August 23, 2002. Trees can bear fruit.

3. Venus Williams’ swing hit the ball. Tennis swings can hit things.

4. The final match ended at 11:45 in the morning. Matches can end.

5. Serena Williams served. Tennis players can serve.

Behaviors are verbs and behaviors of objects are called methods, which are simply functions defined
within a class definition. In Python, we could write the statements above like this:

156 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

rock_he_holds.fall('fast')
backyard_apple_tree.bear_fruit(datetime.date(2002, 8, 23))
venus.swing.hit(ball)
final_match.end(datetime.time(11, 45))
serena.serve()

EVALUATION COPY: Not to be used in class.

❋

5.3. Classes vs. Objects

A class is a template for an object. An object is an instance of a class. When we say Serena Williams is
a tennis player, we are saying that Serena Williams is an object of the TennisPlayer class. There are
other tennis players who have the same attributes and behaviors as Serena Williams, but not in the
same way. For example, Serena has a winning percentage. Her sister Venus also has a winning percentage.
So do Roger Federer and Rafael Nadal. But their winning percentages are all different. They also all
have backhands, but they don’t all have the same backhand. Roger Federer has a one-handed backhand,
while the others all have two-handed backhands. If you needed to express that in code, you could do
it this way:

serena.two_handed_backhand = True
venus.two_handed_backhand = True
roger.two_handed_backhand = False
rafa.two_handed_backhand = True

In programming, we use classes to define what attributes and behaviors an object has or can have. In
Python, we do this with the class keyword, like this:

class Player:
pass

We then create an instance of that class like this:

serena = Player()

LESSON 5: Classes and Objects | 157

EVALUATION COPY: Not to be used in class.

 5.3.1. Everything Is an Object

Before we go further with this, let’s take a look at some of the classes and objects we have already worked
with in Python. In Python, everything is an object. Strings are objects, lists are objects, integers are
objects, functions are objects. Even classes themselves are objects. Python includes two built-in functions
that help identify the class of an object:

type(obj) – Returns the object’s type, which is essentially a synonym for class.

isinstance(obj, class_type) – Returns True if obj is an instance of class_type.
Otherwise, returns False.

Take a look at the following examples:

>>> type('Hello')
<class 'str'>
>>> isinstance('Hello', str)
True
>>> type(1)
<class 'int'>
>>> isinstance(1, int)
True
>>> type(['a','b','c'])
<class 'list'>
>>> isinstance(['a','b','c'], list)
True
>>> type((1,2,3))
<class 'tuple'>
>>> isinstance((1,2,3), tuple)
True
>>> type({'a':1, 'b':2})
<class 'dict'>
>>> isinstance({'a':1, 'b':2}, dict)
True

The print() function is an instance of the builtin_function_or_method:

>>> type(print)
<class 'builtin_function_or_method'>

158 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

There are some built-in functions that are really classes and not functions. Examples are tuple, list,
dict, and range. The following code shows that age is of type range and range is of type type
(meaning that it is a class):

>>> age = range(0, 100)
>>> type(age)
<class 'range'>
>>> type(range)
<class 'type'>

Again, type is just a synonym for class.20

 5.3.2. Creating Custom Classes

Now, let’s return to our Player class:

class Player:
pass

By convention, classes are named using upper camel case (e.g., MyClass).21 Check out the following:

>>> class Player:
... pass
...
>>> serena = Player()
>>> type(serena)
<class '__main__.Player'>
>>> type(Player)
<class 'type'>
>>> isinstance(serena, Player)
True

This shows:

1. That the Player class is of type type.

2. That the instance of Player is of type __main__.Player. The __main__ tells us that the
class was defined at the top level. Don’t worry about that for now.

20. Historically, there were some differences, but those differences are largely academic.
21. The tuple, list, dict, and range classes are exceptions because they are usually used like functions rather than classes.

LESSON 5: Classes and Objects | 159

EVALUATION COPY: Not to be used in class.

3. That serena is an instance of Player.

EVALUATION COPY: Not to be used in class.

❋

5.4. Attributes and Methods

Let’s see how to create a class that creates dice objects:

Demo 5.1: classes-objects/Demos/Die1.py

class Die:1.
pass2.

We could import this class and instantiate a new Die object like this:

import Die1

die = Die1.Die()

Or we could import the Die class directly:

from Die1 import Die

die = Die()

Try this yourself by opening a Python prompt at classes-objects/Demos and running the code:

>>> import Die1
>>> die = Die1.Die()
>>> die
<Die1.Die object at 0x00000212F7800AF0>
>>> from Die1 import Die
>>> die = Die()
>>> die
<Die1.Die object at 0x00000212F79DAB20>

160 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

This Die class doesn’t currently define any attributes or methods, so it’s not very useful. The appropriate
attributes and methods would depend on what type of application we want to build. No matter what
the application is though, we are going to want to include an initialization method. An initialization
method is a special method in Python, __init__(), that is automatically called when an object is
instantiated (i.e., created). The purpose of the __init__() method is to set the initial attributes of
the new object.

Double Underscores

Note that the double underscores surrounding init indicate that this is a special method (a
magic method) in Python. You should never name your own methods in this way.

For now, let’s initialize Die objects with a single attribute: sides with a default value of 6:

Demo 5.2: classes-objects/Demos/Die2.py

class Die:1.
def __init__(self, sides=6):2.

self.sides = sides3.

The first parameter of every standard method defined in a class, including the __init__() method,
is self,22 which is a reference to the object being created. Methods can have any number of additional
parameters. Our __init__() method takes one additional parameter: sides, which it assigns to
self.sides. When we create a Die object, we do not pass in anything for self; the object itself gets
passed in automatically. We just pass in a value for sides. The result is that our new Die object has
a sides attribute, which holds an integer.

Forgetting Your self

If you are new to creating your own classes, it may take you a while to get used to including self
as the first parameter of your methods. If you forget to include it, you will get an error similar
to the following when you try to call that method on your class instance:

xyz_method() takes 0 positional arguments but 1 was given

22. You could name the first parameter by a different name, but you really shouldn’t. It would just be self-punishment.

LESSON 5: Classes and Objects | 161

EVALUATION COPY: Not to be used in class.

Look at the class definition for Die again and notice that in the __init__() method we assign sides
to self.sides. Remember that self is the object created by the class. The value we pass in for sides
is assigned to the sides attribute of self as the following test code demonstrates:

Demo 5.3: classes-objects/Demos/test_Die2.py

import unittest1.
from Die2 import Die2.

3.
class TestDieFunctions(unittest.TestCase):4.

5.
def setUp(self):6.

self.die1 = Die()7.
self.die2 = Die(8)8.

9.
def test_init(self):10.

self.assertEqual(self.die1.sides, 6)11.
self.assertEqual(self.die2.sides, 8)12.

13.
if __name__ == '__main__':14.

unittest.main()15.

Run this test file to see how it works:

…/classes-objects/Demos> python test_Die2.py -v
test_init (__main__.TestDieFunctions) ... ok

--
Ran 1 test in 0.000s

OK

Both of our asserts passed, meaning that self.sides contains what we expect it to.

Derived Attribute Values

It might not always be as straightforward as directly assigning a passed-in argument to an attribute.
Consider this class definition for Circle:

162 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

Demo 5.4: classes-objects/Demos/Circle1.py

import math1.
2.

class Circle:3.
def __init__(self, val, prop='r'):4.

if prop == 'r': # radius5.
self.radius = val6.

elif prop == 'd': # diameter7.
self.radius = val / 28.

elif prop == 'c': # circumference9.
self.radius = val / (2 * math.pi)10.

elif prop == 'a': # area11.
self.radius = (val / math.pi) ** .512.

else:13.
raise Exception('prop must be r, d, c, or a')14.

15.
self.diameter = self.radius * 216.
self.circumference = self.radius * 2 * math.pi17.
self.area = self.radius ** 2 * math.pi18.

In this case, a Circle object is initialized with two parameters: val and prop, neither of which is
directly assigned to the object. Rather, we use the values passed in to determine four of the object’s
attributes:

1. radius

2. diameter

3. circumference

4. area

Let’s test the class with the following test code:

LESSON 5: Classes and Objects | 163

EVALUATION COPY: Not to be used in class.

Demo 5.5: classes-objects/Demos/test_Circle1.py

import unittest1.
import math2.
from Circle1 import Circle3.

4.
class TestCircleFunctions(unittest.TestCase):5.

6.
def setUp(self):7.

self.circle_r = Circle(5, 'r')8.
self.circle_d = Circle(10, 'd')9.
self.circle_c = Circle(10 * math.pi, 'c')10.
self.circle_a = Circle(25 * math.pi, 'a')11.

12.
Test circle_r13.
def test_circle_radius(self):14.

self.assertEqual(self.circle_r.radius, 5)15.
self.assertEqual(self.circle_r.diameter, 10)16.
self.assertEqual(self.circle_r.circumference, 10 * math.pi)17.
self.assertEqual(self.circle_r.area, 25 * math.pi)18.

19.
Test circle_d20.
def test_circle_diameter(self):21.

self.assertEqual(self.circle_d.radius, 5)22.
self.assertEqual(self.circle_d.diameter, 10)23.
self.assertEqual(self.circle_d.circumference, 10 * math.pi)24.
self.assertEqual(self.circle_d.area, 25 * math.pi)25.

26.
Test circle_c27.
def test_circle_circumference(self):28.

self.assertEqual(self.circle_c.radius, 5)29.
self.assertEqual(self.circle_c.diameter, 10)30.
self.assertEqual(self.circle_c.circumference, 10 * math.pi)31.
self.assertEqual(self.circle_c.area, 25 * math.pi)32.

33.
Test circle_a34.
def test_circle_area(self):35.

self.assertEqual(self.circle_a.radius, 5)36.
self.assertEqual(self.circle_a.diameter, 10)37.
self.assertEqual(self.circle_a.circumference, 10 * math.pi)38.
self.assertEqual(self.circle_a.area, 25 * math.pi)39.

40.
if __name__ == '__main__':41.

unittest.main()42.

164 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

Running this file should return the following, indicating that the class calculates the attribute values
correctly:

…/classes-objects/Demos> python test_Circle1.py -v
test_circle_area (__main__.TestCircleFunctions) ... ok
test_circle_circumference (__main__.TestCircleFunctions) ... ok
test_circle_diameter (__main__.TestCircleFunctions) ... ok
test_circle_radius (__main__.TestCircleFunctions) ... ok

--
Ran 4 tests in 0.000s

OK

Let’s now add a resize_by() method to our Circle class:

Demo 5.6: classes-objects/Demos/Circle2.py

import math1.
2.

class Circle:3.
def __init__(self, val, prop='r'):4.

if prop == 'r':5.
self.radius = val6.

elif prop == 'd':7.
self.radius = val / 28.

elif prop == 'c':9.
self.radius = val / (2 * math.pi)10.

elif prop == 'a':11.
self.radius = (val / math.pi) ** .512.

else:13.
raise Exception('prop must be r, d, c, or a')14.

15.
self.diameter = self.radius * 216.
self.circumference = self.radius * 2 * math.pi17.
self.area = self.radius ** 2 * math.pi18.

19.
def resize_by(self, amount):20.

self.radius *= (1 + amount)21.
self.diameter = self.radius * 222.
self.circumference = self.radius * 2 * math.pi23.
self.area = self.radius ** 2 * math.pi24.

LESSON 5: Classes and Objects | 165

EVALUATION COPY: Not to be used in class.

Again, we pass self into the method. We also pass in an amount. We use the value of amount to
change radius and then we change the other attributes based on the new radius.

Let’s test the class with the following test code:

Demo 5.7: classes-objects/Demos/test_Circle2.py

import unittest1.
import math2.
from Circle2 import Circle3.

4.
class TestCircleFunctions(unittest.TestCase):5.

6.
def setUp(self):7.

-------Lines 8 through 12 Omitted-------
self.circle_resized = Circle(5, 'r')13.
self.circle_resized.resize_by(.5) # grow by 50%14.

-------Lines 15 through 39 Omitted-------
def test_circle_resized(self):40.

self.assertEqual(self.circle_resized.radius, 7.5)41.
self.assertEqual(self.circle_resized.diameter, 15)42.
self.assertEqual(self.circle_resized.circumference, 15 * math.pi)43.
self.assertEqual(self.circle_resized.area, 7.5 * 7.5 * math.pi)44.

45.
if __name__ == '__main__':46.

unittest.main()47.

Running this file should return the following:

…/classes-objects/Demos> python test_Circle2.py -v
test_circle_area (__main__.TestCircleFunctions) ... ok
test_circle_circumference (__main__.TestCircleFunctions) ... ok
test_circle_diameter (__main__.TestCircleFunctions) ... ok
test_circle_radius (__main__.TestCircleFunctions) ... ok
test_circle_resized (__main__.TestCircleFunctions) ... ok

--
Ran 5 tests in 0.000s

OK

166 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

 Exercise 15: Adding a roll() Method to Die
 15 to 25 minutes

Currently, we have a Die class to create die objects with some number of sides, but we have no way
to roll the die. In this exercise, you will add a roll() method to the Die class.

1. Navigate to classes-objects/Exercises and open Die.py in your editor.

2. Add a roll() method that returns an integer between 1 and sides. You will need to import
the random module.

3. Test your solution by creating an instance of Die and calling the roll() method several
times.

Challenge

Write code to roll the die 100,000 times and then use a Counter object to create a list that shows how
many times each side was rolled. It should output something like this:

[(1, 16422), (2, 16596), (3, 16567), (4, 16761), (5, 16951), (6, 16703)]

LESSON 5: Classes and Objects | 167

EVALUATION COPY: Not to be used in class.

Solution: classes-objects/Solutions/Die1.py

import random1.
2.

class Die:3.
def __init__(self, sides=6):4.

self.sides = sides5.
6.

def roll(self):7.
roll = random.randint(1, self.sides)8.
return roll9.

Solution: classes-objects/Solutions/roll_die1.py

from Die1 import Die1.
2.

die = Die()3.
4.

roll = die.roll()5.
print(roll)6.

Challenge Solution: classes-objects/Solutions/roll_die1_challenge.py

from collections import Counter1.
from Die1 import Die2.

3.
die = Die()4.

5.
rolls = []6.
for i in range(100000):7.

roll = die.roll()8.
rolls.append(roll)9.

10.
c = Counter(rolls)11.
c_sorted = sorted(c.items())12.

13.
print(c_sorted)14.

EVALUATION COPY: Not to be used in class.

❋

168 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

5.5. Private Attributes

Many object-oriented programming languages have the concept of private attributes – attributes of the
instance objects that can only be modified within the class definition. To understand the need for
private attributes, consider what would happen if we set a value for the radius of our circle c like this:

c.radius = 25

That would change the value of radius, but would not change the values of diameter,
circumference, and area, and so, the circle’s radius would now be out of sync with its other
attributes. In languages that allow for private attributes, you would explicitly mark those attributes
private and only allow access to them through getter and setter methods, like this:

LESSON 5: Classes and Objects | 169

EVALUATION COPY: Not to be used in class.

Demo 5.8: classes-objects/Demos/Circle3.py

import math1.
class Circle:2.

def __init__(self, val, prop='r'):3.
if prop == 'r':4.

self.set_radius(val)5.
elif prop == 'd':6.

self.set_diameter(val)7.
elif prop == 'c':8.

self.set_circumference(val)9.
elif prop == 'a':10.

self.set_area(val)11.
else:12.

raise Exception('prop must be r, d, c, or a')13.
14.

def set_radius(self, r):15.
self._radius = r16.
self._diameter = r * 217.
self._circumference = r * 2 * math.pi18.
self._area = r ** 2 * math.pi19.

20.
def get_radius(self):21.

return self._radius22.
23.

def set_diameter(self, d):24.
self.set_radius(d / 2)25.

26.
def get_diameter(self):27.

return self._diameter28.
29.

def set_circumference(self, c):30.
self.set_radius(c / (2 * math.pi))31.

32.
def get_circumference(self):33.

return self._circumference34.
35.

def set_area(self, a):36.
self.set_radius((a / math.pi) ** .5)37.

38.
def get_area(self):39.

return self._area40.
41.

def resize_by(self, amount):42.
r = self._radius * (1 + amount)43.
self.set_radius(r)44.

170 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

Notice that the attributes are now preceded by an underscore (e.g., _radius). That is a convention to
indicate that the attribute is meant to be private (i.e., not accessed directly from outside of the class
definition). Instead, each attribute should be retrieved with its getter and set with its setter. The
set_radius() setter sets all the “private” attributes and the other setters (e.g., set_diameter()) just
hand off the work to set_radius().

To access the attributes’ values, we use the getters:

>>> from Circle3 import Circle
>>> c = Circle(10, 'd')
>>> a = c.get_area()
>>> a
78.53981633974483
>>> c.set_radius(8)
>>> a = c.get_area()
>>> a
201.06192982974676

Note that in Python there is no way to actually prevent developers from accessing the “private” attributes
as the following example (continued from the preceding code) illustrates:

>>> c._radius = 5
>>> a = c.get_area()
>>> print(a)
201.06192982974676

The new area should have been set back to 78.53981633974483 to correspond to a radius of 5, but
notice that setting c._radius did not cause the area of c to get updated. Neither did it result in an
error, so the developer won’t know that something went wrong. Python developers just need to know
not to mess with attributes that begin with underscores.

EVALUATION COPY: Not to be used in class.

❋

5.6. Properties

While using get_ and set_ methods like we did in our previous example works, it is not the Pythonic
way of creating getters and setters. Python developers prefer being able to access attributes directly:

LESSON 5: Classes and Objects | 171

EVALUATION COPY: Not to be used in class.

Not Pythonic

c.set_area(25)
a = c.get_area()

Pythonic

c.area = 25
a = c.area

This is handled in Python through properties. Think of a property as an attribute with a defined getter
and possibly a setter and a deleter as well.

There are two ways to create properties: with the property() function and with the @property
decorator.23

 5.6.1. Creating Properties with the property() Function

class Circle:
def __init__(self):

self._radius = None

def get_radius(self):
return self._radius

def set_radius(self, r):
self._radius = r

radius = property(get_radius, set_radius)

The code above makes use of get_ and set_ methods like many other object-oriented languages, but
then it uses the built-in property() function to create a radius property, which allows radius to
be got and set directly using c.radius.

23. Decorators are functions that add functionality to (i.e., “decorate”) other functions.

172 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

 5.6.2. Creating Properties using the @property Decorator

class Circle:
def __init__(self):

self._radius = None

@property
def radius(self):

return self._radius

@radius.setter
def radius(self, r):

self._radius = r

@property is a decorator, which turns the method directly following it into a getter method.

@radius.setter is also a decorator, which turns the method directly following it into a setter method
for radius.

Here is our Circle class with properties defined:

LESSON 5: Classes and Objects | 173

EVALUATION COPY: Not to be used in class.

Demo 5.9: classes-objects/Demos/Circle4.py

-------Lines 1 through 15 Omitted-------
def resize_by(self, amount):16.

r = self._radius * (1 + amount)17.
self.set_radius(r)18.

19.
@property20.
def radius(self):21.

return self._radius22.
23.

@radius.setter24.
def radius(self, r):25.

self._radius = r26.
self._diameter = r * 227.
self._circumference = r * 2 * math.pi28.
self._area = r ** 2 * math.pi29.

30.
@property31.
def diameter(self):32.

return self._diameter33.
34.

@diameter.setter35.
def diameter(self, d):36.

self.radius = d / 237.
38.

@property39.
def circumference(self):40.

return self._circumference41.
42.

@circumference.setter43.
def circumference(self, c):44.

self.radius = c / (2 * math.pi)45.
46.

@property47.
def area(self):48.

return self._area49.
50.

@area.setter51.
def area(self, a):52.

self.radius = (a / math.pi) ** .553.

174 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

Forgetting the Underscore

A common error when using the @property decorator is to forget the underscore when attempting
to return the attribute, like this:

class Foo:
@property
def name(self):

return self.name

a = Foo()
print(a.name)

This will cause an infinite loop and result in a “maximum recursion depth exceeded while calling
a Python object” error, because the return statement is trying to return self.name, which
directs Python back to the name() getter, which tries again to return self.name. This is bad.
So, don’t forget your underscores.

LESSON 5: Classes and Objects | 175

EVALUATION COPY: Not to be used in class.

 Exercise 16: Properties
 15 to 25 minutes

In this exercise, you will convert get_ methods to properties.

1. Open classes-objects/Exercises/Simulation.py in your editor.

2. Notice the get_mean(), get_median(), and get_mode() methods, which take advantage
of the statistics module to calculate average results of a die rolled many times.

3. Run the code to see how it works. Here is a sample script you can run (using the Die class
with the roll method assigned in an earlier exercise):

>>> from Die import Die
>>> from Simulation import Simulation
>>> die = Die()
>>> sim = Simulation(die.roll, 1000)
>>> sim.get_mean()
3.453
>>> sim.get_median()
3.0
>>> sim.get_mode()
1

4. Convert the three get_ methods to properties and test your solution with the same code as
above but replacing the get_ methods statement with property references:

>>> from Die1 import Die
>>> from Simulation import Simulation
>>> die = Die()
>>> sim = Simulation(die.roll, 1000)
>>> sim.mean
3.453
>>> sim.median
3.0
>>> sim.mode
1

176 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

LESSON 5: Classes and Objects | 177

EVALUATION COPY: Not to be used in class.

Solution: classes-objects/Solutions/Simulation.py

import statistics as stats1.
2.

class Simulation:3.
def __init__(self, fnct_to_run, iterations):4.

self._fnct_to_run = fnct_to_run5.
self._iterations = iterations6.
self._results = []7.
self.run()8.

9.
def run(self):10.

for i in range(self._iterations):11.
result = self._fnct_to_run()12.
self._results.append(result)13.

14.
@property15.
def mean(self):16.

return stats.mean(self._results)17.
18.

@property19.
def median(self):20.

return stats.median(self._results)21.
22.

@property23.
def mode(self):24.

try:25.
return stats.mode(self._results)26.

except:27.
return None28.

EVALUATION COPY: Not to be used in class.

❋

5.7. Objects that Track their Own History

In the Simulation class from the last exercise, we keep track of the rolls, but a die could keep track
of its own history as well:

178 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

Demo 5.10: classes-objects/Demos/Die3.py

import random1.
2.

class Die:3.
def __init__(self, sides=6):4.

if type(sides) != int or sides < 1:5.
raise Exception('sides must be a positive integer.')6.

self._sides = sides7.
self._rolls = []8.

9.
@property10.
def rolls(self):11.

return self._rolls12.
13.

def roll(self):14.
roll = random.randint(1, self._sides)15.
self._rolls.append(roll)16.
return roll17.

Each time the roll() method is called the die instance will automatically append the result of the
roll to its _rolls property.

Demo 5.11: classes-objects/Demos/roll_die3.py

from collections import Counter1.
from Die3 import Die2.

3.
die = Die()4.

5.
for i in range(100000):6.

roll = die.roll()7.
8.

rolls = die.rolls9.
c = Counter(rolls)10.
c_sorted = sorted(c.items())11.

12.
print(c_sorted)13.

Notice that we no longer have to keep a list of rolls as we did in the solution to the challenge in the
Adding a roll() Method exercise (see page 167), which contains this code:

LESSON 5: Classes and Objects | 179

EVALUATION COPY: Not to be used in class.

rolls = []
for i in range(100000):

roll = die.roll()
rolls.append(roll)

Instead, we use the die’s own rolls property:

rolls = die.rolls

EVALUATION COPY: Not to be used in class.

❋

5.8. Documenting Classes

One nice thing about using classes is the documentation you get for free. Check out the documentation
for our Circle class in classes-objects/Demos/Circle4.py:

180 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

>>> import Circle4
>>> help(Circle4)
Help on module Circle4:

NAME
Circle4

CLASSES
builtins.object

Circle

class Circle(builtins.object)
| Circle(val, prop='r')
|
| Methods defined here:
|
| __init__(self, val, prop='r')
| Initialize self. See help(type(self)) for accurate signature.
|
| resize_by(self, amount)
|
| --
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
|
| area
|
| circumference
|
| diameter
|
| radius

This tells us that the Circle class has two methods: __init__() and resize_by() and four properties:
area, circumference, diameter, and radius.

LESSON 5: Classes and Objects | 181

EVALUATION COPY: Not to be used in class.

 5.8.1. Using docstrings

Assuming we named our attributes, methods, and properties well, we will get some pretty good free
documentation, but we can make it a lot better by using docstrings. A docstring is just a string placed
at the beginning of a module, function, class, or method definition. The string can be a single line (in
single quotes) or multiple lines (in triple quotes). By convention, double quotation marks (" or """)
are used for docstrings.

As a rule, all classes and their methods should include docstrings. Methods should include documentation
on any keyword arguments.

Following are some docstrings for our Circle class:

182 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

Demo 5.12: classes-objects/Demos/Circle5.py

class Circle:1.
"A circle"2.
def __init__(self, val, prop='r'):3.

"""Create a circle based on a radius, diameter,4.
circumference, or area5.

6.
Keyword arguments:7.
val (float) -- the value of prop8.
prop (str)9.

-- 'r' : radius (default)10.
-- 'd' : diameter11.
-- 'c' : circumference12.
-- 'a' : area13.

"""14.
self._radius = None15.
self._diameter = None16.
self._circumference = None17.
self._area = None18.
if prop == 'r':19.

self.radius = val20.
elif prop == 'd':21.

self.diameter = val22.
elif prop == 'c':23.

self.circumference = val24.
elif prop == 'a':25.

self.area = val26.
else:27.

raise Exception('prop must be r, d, c, or a')28.
29.

@property30.
def radius(self):31.

"radius of the circle object"32.
return self._radius33.

34.
@radius.setter35.
def radius(self, r):36.

"""sets _radius, _diameter, _circumference, and _area of37.
circle object"""38.

self._radius = r39.
self._diameter = r * 240.
self._circumference = r * 2 * math.pi41.
self._area = r ** 2 * math.pi42.

43.
@property44.

LESSON 5: Classes and Objects | 183

EVALUATION COPY: Not to be used in class.

def diameter(self):45.
"diameter (2 x r) of the circle object"46.
return self._diameter47.

48.
@diameter.setter49.
def diameter(self, d):50.

"""uses diameter d to set radius, which then51.
updates all related pseudo-private attributes"""52.
self.radius = d / 253.

54.
@property55.
def circumference(self):56.

"circumference (PI x d) of the circle object"57.
return self._circumference58.

59.
@circumference.setter60.
def circumference(self, c):61.

"""uses circumference c to set radius, which then updates62.
all related pseudo-private attributes"""63.
self.radius = c / (2 * math.pi)64.

65.
@property66.
def area(self):67.

"area (PI x r squared) of the circle object"68.
return self._area69.

70.
@area.setter71.
def area(self, a):72.

"""uses area a to set radius, which then updates all73.
related pseudo-private attributes"""74.
self.radius = (a / math.pi) ** .575.

76.
def resize_by(self, amount):77.

"""resizes radius, which then updates all related78.
pseudo-private attributes79.

80.
Keyword arguments:81.
amount (float) -- the amount by which to resize the radius82.

-- a negative number shrinks the radius83.
"""84.
self.radius = self.radius * (1 + amount)85.

Check out how this improves the help documentation:

184 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

>>> import Circle5
>>> help(Circle5)
Help on module Circle5:

NAME
Circle5

CLASSES
builtins.object

Circle

class Circle(builtins.object)
| Circle(val, prop='r')
|
| A circle
|
| Methods defined here:
|
| __init__(self, val, prop='r')
| Create a circle based on a radius, diameter,
| circumference, or area
|
| Keyword arguments:
| val (float) -- the value of prop
| prop (str)
| -- 'r' : radius (default)
| -- 'd' : diameter
| -- 'c' : circumference
| -- 'a' : area
|
| resize_by(self, amount)
| resizes radius, which then updates all related
| pseudo-private attributes
|
| Keyword arguments:
| amount (float) -- the amount by which to resize the radius
| -- a negative number shrinks the radius
|

Notice the help does not include the setter documentation. If you want that documentation to show
up in the help, you could include it in the getter, like this:

LESSON 5: Classes and Objects | 185

EVALUATION COPY: Not to be used in class.

@property
def radius(self):

"""radius of the circle object
setter: sets _radius, _diameter, _circumference,

and _area of Circle object
"""

@property
def diameter(self):

"""diameter (2 x r) of the circle object
setter: uses diameter d to set radius, which then updates

all pseudo-private attributes
"""

186 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

 Exercise 17: Documenting the Die Class
 10 to 20 minutes

In this exercise, you will add docstrings to the Die class.

1. Open classes-objects/Exercises/Die.py in your editor.

2. Add docstrings to the class so that help(Die) will output the following:

Help on class Die in module Die:

class Die(builtins.object)
| A die
|
| Methods defined here:
|
| __init__(self, sides=6)
| Creates a new standard die
|
| Keyword arguments:
| sides (int) -- number of die sides.
|
| roll(self)
| Returns a value between 1 and the number of die sides.
|
| --
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
|
| rolls
| history of rolls

LESSON 5: Classes and Objects | 187

EVALUATION COPY: Not to be used in class.

Solution: classes-objects/Solutions/Die2.py

import random1.
2.

class Die:3.
"A die"4.
def __init__(self, sides=6):5.

"""Creates a new standard die6.
7.

Keyword arguments:8.
sides (int) -- number of die sides."""9.

if type(sides) != int or sides < 1:10.
raise Exception('sides must be a positive integer.')11.

self._sides = sides12.
self._rolls = []13.

14.
@property15.
def rolls(self):16.

"history of rolls"17.
return self._rolls18.

19.
def roll(self):20.

"Returns a value between 1 and the number of die sides."21.
roll = random.randint(1, self._sides)22.
self._rolls.append(roll)23.
return roll24.

EVALUATION COPY: Not to be used in class.

❋

5.9. Inheritance

Often you will find a class has a lot of the functionality you need, but is missing something. No worries.
You can create your own class that inherits all the functionality of the other class and then you can
make additions and modifications. The syntax for doing so is:

188 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

class A:
pass

class B(A):
pass

B is a subclass of A. A is a superclass of B.

 5.9.1. Overriding a Class Method

Here is an example in which B overrides a method of A:

Demo 5.13: classes-objects/Demos/inheritance.py

class A:1.
def __init__(self, name):2.

self.name = name3.
4.

def intro(self):5.
print('Hello, my name is {}.'.format(self.name))6.

7.
def outro(self):8.

print('Goodbye!')9.
10.

class B(A):11.
def intro(self):12.

print('Hi, I am {}.'.format(self.name))13.
14.

a = A('George')15.
b = B('Ringo')16.

17.
a.intro()18.
b.intro()19.
a.outro()20.
b.outro()21.

The output will be:

LESSON 5: Classes and Objects | 189

EVALUATION COPY: Not to be used in class.

…/classes-objects/Demos> python inheritance.py
Hello, my name is George.
Hi, I am Ringo.
Goodbye!
Goodbye!

Things to notice:

1. When we call b.intro(), it uses the intro() method defined in the B class.

2. When we call b.outro(), it uses the outro() method defined in the A class, because that
method is not overwritten in the B class.

 5.9.2. Extending a Class

The built-in list class has an append() method for appending new items to a list. It also has an
insert() method for inserting new items at a specific index. However, it has no prepend() method.
If you want to prepend an item to a list, the syntax is mylist.insert(0, item). Let’s create our
own subclass of list that includes a prepend() method:

Demo 5.14: classes-objects/Demos/MyList.py

class MyList(list):1.
"A subclass of list with additional functionality"2.
def prepend(self, obj):3.

"""prepend obj to list4.
5.

Keyword arguments:6.
obj -- obj to prepend"""7.
self.insert(0, obj)8.

Now, let’s test our new class:

>>> from MyList import MyList
>>> mylist = MyList(['a','b','c'])
>>> mylist.append('y')
>>> mylist.prepend('z')
>>> mylist
['z', 'a', 'b', 'c', 'y']

190 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

Notice that mylist has the append() method, which MyList inherited from list and it also has the
new prepend() method.

LESSON 5: Classes and Objects | 191

EVALUATION COPY: Not to be used in class.

 Exercise 18: Extending the Die Class
 15 to 25 minutes

In this exercise, you will create a WeightedDie class that extends the Die class.

Exercise Code 18.1: classes-objects/Exercises/WeightedDie.py

import random1.
from Die import Die2.

3.
class WeightedDie(Die):4.

"A weighted die"5.
def __init__(self, weights, sides=6):6.

"""Creates a new weighted die7.
8.

Keyword arguments:9.
sides (int) -- number of die sides.10.
weights (list) -- a list of integers holding the weights11.

for each die side12.
"""13.
if len(weights) != sides:14.

raise Exception(f'weights must be a list of length {sides}.')15.
super().__init__(sides)16.
self._weights = weights17.

18.
def roll(self):19.

"""Returns a value between 1 and the number of die sides."""20.
21.

COMPLETE THIS CODE22.

1. Open classes-objects/Exercises/WeightedDie.py in your editor.

2. Review the __init__() method of the WeightedDie class. Notice that it creates a
pseudo-private _weights attribute that holds a list of weights, each corresponding to a side
of the die. A six-sided die with the following _weights should roll a 6 five of every ten rolls
(on average):

[1, 1, 1, 1, 1, 5]

3. Complete the roll() method in the WeightedDie class. Again, the odds of returning a value
should correlate to the weight in self._weights. One way of doing this is to create a new

192 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

list that contains each possible roll n times, where n is the associated weight. For example, for
the self._weights above, the new list would look like this:

[1, 2, 3, 4, 5, 6, 6, 6, 6, 6]

Then use random.choice() to select a value from that list.

4. To test your solution, run the following code:

from WeightedDie import WeightedDie
from collections import Counter
die = WeightedDie(weights=[1, 1, 1, 1, 1, 5])

for i in range(100000):
roll = die.roll()

c = Counter(die.rolls)
c_sorted = sorted(c.items())
c_sorted

The output should be something like this:

[(1, 9899), (2, 10012), (3, 10083), (4, 10133), (5, 10011), (6, 49862)]

5. Notice that the instance of WeightedDie has a rolls property, which it inherited from the
Die class.

LESSON 5: Classes and Objects | 193

EVALUATION COPY: Not to be used in class.

Solution: classes-objects/Solutions/WeightedDie.py

import random1.
2.

from Die2 import Die3.
4.

class WeightedDie(Die):5.
"A weighted die"6.
def __init__(self, weights, sides=6):7.

"""Creates a new weighted die8.
9.

Keyword arguments:10.
sides (int) -- number of die sides.11.
weights (list) -- a list of integers holding the weights12.

for each die side13.
"""14.
if len(weights) != sides:15.

raise Exception(f'weights must be a list of length {sides}.')16.
super().__init__(sides)17.
self._weights = weights18.

19.
def roll(self):20.

"""Returns a value between 1 and the number of die sides."""21.
options = []22.
for i in range(self._sides):23.

for j in range(self._weights[i]):24.
options.append(i+1)25.

roll = random.choice(options)26.
self._rolls.append(roll)27.
return roll28.

EVALUATION COPY: Not to be used in class.

❋

5.10. Extending a Class Method

Suppose a class you are extending has a method that does almost everything you want it to do, but
you’d like to add something more. You may find you’re able to extend the method rather than overwrite
it. Here’s a simple example:

194 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

Demo 5.15: classes-objects/Demos/extending_a_class_method.py

class A:1.
def __init__(self, name):2.

self.name = name3.
4.

def intro(self):5.
print('Hello, my name is {}.'.format(self.name))6.

7.
def outro(self):8.

print('Goodbye!')9.
10.

class B(A):11.
def intro(self):12.

super().intro()13.
print('It\'s very nice to meet you.')14.

15.
a = A('George')16.
b = B('Ringo')17.

18.
a.intro()19.
print('-------')20.
b.intro()21.
print('-------')22.
a.outro()23.
b.outro()24.

This code produces the following output:

…/classes-objects/Demos> python extending_a_class_method.py
Hello, my name is George.

Hello, my name is Ringo.
It's very nice to meet you.

Goodbye!
Goodbye!

Notice the intro() method of class B. It first calls super().intro(), which calls the intro()
method of the superclass. Then it extends the method by printing “It's very nice to meet you.”

LESSON 5: Classes and Objects | 195

EVALUATION COPY: Not to be used in class.

Creating a Non-Negative Counter

You may remember from a previous lesson (see page 23) that when subtracting from a Counter, it is
possible to end up with negative counts:

Subtracting with a Counter

>>> c = Counter(['green', 'blue', 'blue', 'red', 'yellow', 'green', 'blue'])
>>> c # Before subtraction:
Counter({'blue': 3, 'green': 2, 'red': 1, 'yellow': 1})
>>> c.subtract(['red', 'yellow', 'yellow', 'purple'])
>>> c # After subtraction:
Counter({'blue': 3, 'green': 2, 'red': 0, 'yellow': -1, 'purple': -1})

Often, as with a product inventory, having a negative count doesn’t make sense.

Counter objects have a special __setitem__() method that sets key values. We can override that
method like this:

Demo 5.16: classes-objects/Demos/NonNegativeCounter.py

from collections import Counter1.
2.

class NonNegativeCounter(Counter):3.
'Counter that disallows negative values'4.
def __setitem__(self, key, value):5.

value = 0 if value < 0 else value6.
super().__setitem__(key, value)7.

On line 6, we set value to 0 if it is less than 0. Otherwise, we set it to the value passed in to
__setitem__().

Then, on the next line, we pass key and value to super().__setitem__().

super() refers to this class’s superclass; that is, to Counter.

Let’s see how it works:

196 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

>>> from NonNegativeCounter import NonNegativeCounter
>>> c = NonNegativeCounter(['green', 'blue', 'blue', 'red', 'yellow', 'green', 'blue'])
>>> c.subtract(['red', 'yellow', 'yellow', 'purple'])
>>> c
NonNegativeCounter({'blue': 3, 'green': 2, 'red': 0, 'yellow': 0, 'purple': 0})

Notice that this time the values for the yellow and purple keys are both 0.

LESSON 5: Classes and Objects | 197

EVALUATION COPY: Not to be used in class.

 Exercise 19: Extending the roll() Method
 10 to 20 minutes

In this exercise, you will create a WeightingDie class that extends the WeightedDie class. A weighting
die starts with equal weights on each side, but it becomes weighted by giving more weight to rolls it
has rolled before. It does this by modifying the _weights attribute with each roll. Here is the initial
code:

Exercise Code 19.1: classes-objects/Exercises/WeightingDie.py

import random1.
from WeightedDie import WeightedDie2.

3.
class WeightingDie(WeightedDie):4.

"A weighting die"5.
def __init__(self, sides=6):6.

"""Creates a die that favors sides it has previously rolled7.
8.

Keyword arguments:9.
sides (int) -- number of die sides.10.
"""11.
self._weights = [1] * sides12.
super().__init__(self._weights, sides)13.

14.
def roll(self):15.

"""Returns a value between 1 and the number of die sides."""16.
COMPLETE THE CODE17.

Review the __init__() method of the WeightingDie class. Notice that it does not take a weights
parameter like its superclass does. Rather, it sets all values in _weights to 1 using:

self._weights = [1] * sides

It then calls super().__init__() passing in self._weights and sides.

1. Open classes-objects/Exercises/WeightingDie.py in your editor.

2. Complete the roll() method so that it:

A. Calls the roll() method of the superclass and stores the result in a local variable.

198 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

B. Modifies self._weights so that the weight for the roll just rolled is incremented
by 1.

C. Returns the roll.

3. To test your solution, run the following code:

from collections import Counter
from WeightingDie import WeightingDie
die = WeightingDie()

for i in range(10000):
roll = die.roll()

c = Counter(die.rolls)
c_sorted = sorted(c.items())
c_sorted

The output should be something like this:

[(1, 473), (2, 70), (3, 828), (4, 4418), (5, 3359), (6, 852)]

LESSON 5: Classes and Objects | 199

EVALUATION COPY: Not to be used in class.

Solution: classes-objects/Solutions/WeightingDie.py

import random1.
from WeightedDie import WeightedDie2.

3.
class WeightingDie(WeightedDie):4.

"A weighted die"5.
def __init__(self, sides=6):6.

"""Creates a die that favors sides it has previously rolled7.
8.

Keyword arguments:9.
sides (int) -- number of die sides.10.
"""11.
self._weights = [1] * sides12.
super().__init__(self._weights, sides)13.

14.
def roll(self):15.

"""Returns a value between 1 and the number of die sides."""16.
result = super().roll()17.
self._weights[result-1] += 118.
return result19.

EVALUATION COPY: Not to be used in class.

❋

5.11. Static Methods

As we’ve discussed, when you call a regular method on an instance of a class, the instance itself is passed
in as the first argument. Python classes can also have static methods, which are created by including
@staticmethod immediately before the method. A static method can be called directly on the class
or on an instance of the class. It does not take self as the first parameter. For instance:

200 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

class Planet:
@staticmethod
def greet():

print('hello')

Planet.greet()
earth = Planet()
earth.greet()

And here is a more practical example:

Demo 5.17: classes-objects/Demos/Triangle.py

class Triangle:1.
def __init__(self, sides):2.

if not self.is_triangle(sides):3.
raise Exception('Cannot make triangle with those sides.')4.

self._sides = sides5.
6.

@property7.
def perimeter(self):8.

return sum(self._sides)9.
10.

@property11.
def area(self):12.

p = self.perimeter/213.
a = self._sides[0]14.
b = self._sides[1]15.
c = self._sides[2]16.
return (p * (p-a) * (p-b) * (p-c)) ** .517.

18.
@staticmethod19.
def is_triangle(sides):20.

if len(sides) != 3:21.
return False22.

sides.sort()23.
if sides[0] + sides[1] < sides[2]:24.

return False25.
return True26.

Things to notice:

1. The is_triangle() method is preceded by @staticmethod, indicating that it is a static
method.

LESSON 5: Classes and Objects | 201

EVALUATION COPY: Not to be used in class.

2. The is_triangle() does not take self as its first parameter.

3. On line 3, the __init__() method makes use of the is_triangle() method to check
whether it is possible to make a triangle from the sides. It can call the method on self (i.e.,
the instance) but doesn’t pass self in. It just passes in sides.

Let’s try out the Triangle class:

>>> from Triangle import Triangle
>>> good = [3,3,5]
>>> bad = [3,3,9]
>>> print(Triangle.is_triangle(good))
True
>>> print(Triangle.is_triangle(bad))
False
>>> t1 = Triangle(good)
>>> print(t1.area)
4.14578098794425
>>> t2 = Triangle(bad)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Webucator\Python\classes-objects\Demos\Triangle.py", line 4, in __init__
raise Exception('Cannot make triangle with those sides.')

Exception: Cannot make triangle with those sides.

Things to note:

1. The static is_triangle() method of the Triangle class returns True for a good triangle
and False for a bad triangle.

2. We call the static method using the class name, Triangle. We do not need to instantiate a
triangle object to call the method.

3. We can instantiate and print the area of a good triangle but if we attempt to instantiate a bad
triangle, an exception is raised in the __init__ method.

EVALUATION COPY: Not to be used in class.

❋

202 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

5.12. Class Attributes and Methods

 5.12.1. Class Attributes

A class attribute is an attribute that is defined outside of a method, like foo is in the following code:

class A:
foo = 1
def __init__(self):

pass

Class attributes can be accessed by classes themselves and by their instance objects; however, you have
to be careful, as instance attributes will take precedence over class attributes. The following code
illustrates this:

>>> class A:
... foo = 1
... bar = 1
... def __init__(self):
... self.foo = 2
...
>>> a = A()
>>> print(a.foo, A.foo, a.bar, A.bar)
2 1 1 1

Notice that a.foo and A.foo return different values, but a.bar and A.bar both return the value of
the class attribute.

However, if you use an instance variable to modify a mutable object stored as a class attribute, a new
object will not be created. To see this, examine the following code:

>>> class A:
... foo = ['a','b','c']
... def __init__(self):
... self.foo.append('d')
...
>>> a = A()
>>> print(a.foo, A.foo)
['a', 'b', 'c', 'd'] ['a', 'b', 'c', 'd']

LESSON 5: Classes and Objects | 203

EVALUATION COPY: Not to be used in class.

In this case, a.foo and A.foo return the same values, indicating that they are pointing to the same
object.

 5.12.2. Class Methods

Class methods are different from standard methods, which receive the instance object as their first
parameter, and static methods, which do not receive any default arguments. Class methods receive the
class itself as their first argument. To indicate that a method is a class method, precede it with
@classmethod. Just like with a static method, a class method can be called directly on the class or on
an instance of the class. Consider the following class:

Demo 5.18: classes-objects/Demos/MyCounter.py

class MyCounter:1.
count = 12.

3.
@classmethod4.
def increment_count(cls):5.

cls.count += 16.
return cls.count7.

Let’s import this class at the Python terminal and make some calls to increment_count():

>>> from MyCounter import MyCounter
>>> MyCounter.increment_count()
2
>>> c1 = MyCounter()
>>> c1.increment_count()
3
>>> c2 = MyCounter()
>>> c2.increment_count()
4
>>> MyCounter.increment_count()
5

Notice that the count is kept by the class itself and it increments every time increment_count() is
called on the class or on any of its instances.

204 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

self and cls Parameters

The parameter names self and cls used in standard and class methods are used by convention.
You can name them whatever you want, but it’s best to stick with the convention.

So, when do you use class attributes and methods? Imagine you have a Plane class. Instances of Plane
can take off and land. You want to keep track of all the Plane instances that have been created and
also know how many are currently in the air. Here’s a class for doing that:

Demo 5.19: classes-objects/Demos/Plane1.py

class Plane:1.
planes = []2.
def __init__(self):3.

self._in_air = False4.
self.planes.append(self)5.

6.
def take_off(self):7.

self._in_air = True8.
9.

def land(self):10.
self._in_air = False11.

12.
@classmethod13.
def num_planes(cls):14.

return len(cls.planes)15.
16.

@classmethod17.
def num_planes_in_air(cls):18.

return len([plane for plane in cls.planes if plane._in_air])19.

Let’s test the Plane class with the following statements:

LESSON 5: Classes and Objects | 205

EVALUATION COPY: Not to be used in class.

>>> from Plane1 import Plane
>>> p1 = Plane()
>>> p2 = Plane()
>>> p3 = Plane()
>>> p1.take_off()
>>> p2.take_off()
>>> p1.land()
>>> print(Plane.num_planes(), Plane.num_planes_in_air())
3 1

Things to note:

1. When we append self to self.planes (line 5), the Plane instance actually gets appended
to the class attribute planes. That’s because there is no instance attribute planes, so the
instance looks to the class for the attribute.

2. num_planes() and num_planes_in_air() are both class methods, which is why we can
call them on Plane (e.g., Plane.num_planes() and Plane.num_planes_in_air()).

3. After two planes take off and one lands, there is only one plane left in the air.

 5.12.3.You Must Consider Subclasses

There is a hard-to-spot problem in our code though. It only reveals itself when we subclass Plane, like
this :

Demo 5.20: classes-objects/Demos/Jet.py

from Plane1 import Plane1.
2.

class Jet(Plane):3.
def __init__(self):4.

self.planes = []5.
super().__init__()6.

Watch what happens when we run the following code:

206 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

>>> from Plane1 import Plane
>>> from Jet import Jet
>>> p1 = Plane()
>>> p2 = Plane()
>>> p3 = Plane()
>>> p1.take_off()
>>> p2.take_off()
>>> p1.land()
>>> p4 = Jet()
>>> p4.take_off()
>>> print(Plane.num_planes(), Plane.num_planes_in_air())
3 1

Notice that there are a total of 3 planes with 1 in the air, but we created a fourth plane, a jet, and had
it take off. Why isn’t it counted?

Notice that the __init__() method of Jet defines a self.planes attribute. When we append self
to self.planes in the __init__() method of the superclass, this plane instance gets appended to
the instance attribute planes. But our class methods are looking at the class attribute planes, so our
Jet objects won’t be included, which is why the results still show a total of three planes with one in
the air.

The solution is to change the __init__() method of the superclass. One possibility is to use Plane
instead of self when appending the object to planes:

def __init__(self):
self._in_air = False
Plane.planes.append(self)

But it’s better not to use the class name within the class definition. Instead, you can do this:

def __init__(self):
self._in_air = False
type(self).planes.append(self)

type(self) returns the class of the instance object, which is exactly what we want. Now, when Jet
objects are initialized, they will be appended to the class attribute planes rather than the instance
attribute planes.

After making this change, run the same code again and you will see that the jet gets counted.

LESSON 5: Classes and Objects | 207

EVALUATION COPY: Not to be used in class.

EVALUATION COPY: Not to be used in class.

❋

5.13. Abstract Classes and Methods

An abstract class is a class that cannot be instantiated but is created for the purposes of subclassing. For
example, imagine we’re creating a game with a bunch of flying objects, including planes and birds. A
few things to note:

1. Planes can only land when they are over land.

2. Birds can only take off when their wings are healthy.

3. Birds can land anywhere.

Both birds and planes can take off and land, but they may do so in different ways and they may differ
in other ways as well. So, we’ll create a FlyingObject class for objects that can fly, but we don’t want
developers to be able to instantiate FlyingObject objects. Rather, we want them to subclass
FlyingObject to create more specific object types.

Here’s our first stab at our FlyingObject class:

208 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

Demo 5.21: classes-objects/Demos/FlyingObject1.py

class FlyingObject():1.
_flyingobjects = []2.
def __init__(self, name):3.

self._in_air = False4.
self.name = name5.
type(self)._flyingobjects.append(self)6.

7.
def take_off(self):8.

self._in_air = True9.
10.

def land(self):11.
self._in_air = False12.

13.
@classmethod14.
def flying_objects(cls):15.

return cls._flyingobjects16.
17.

def __str__(self):18.
return self.name19.

Let’s test our new class:

>>> from FlyingObject1 import FlyingObject
>>> ufo = FlyingObject('UFO')
>>> print(ufo.flying_objects()[0])
UFO

For the most part, this class serves our purposes, but it has one flaw: it can be instantiated, as the output
from the preceding code reveals.

The __str__(self) Method

The __str__(self) method is a special method that is called when an object is implicitly
converted to a string. Because the FlyingObject class’s __str__() method returns the name
attribute, print(ufo.flying_objects()[0]) outputs “UFO”.

To prevent our class from being instantiated, we need to explicitly specify that FlyingObject is an
abstract class. The way to do that is to make any one of its methods abstract. Doing so, will:

LESSON 5: Classes and Objects | 209

EVALUATION COPY: Not to be used in class.

1. Prevent developers from instantiating FlyingObject objects.

2. Force subclasses to implement the methods marked abstract.

In Python, you create an abstract class, by:

1. Importing the abc module.

2. Creating the class using metaclass=abc.ABCMeta.

3. Using @abc.abstractmethod decorators.

Here again is our FlyingObject class, now legitimately abstract:

Demo 5.22: classes-objects/Demos/FlyingObject.py

import abc1.
2.

class FlyingObject(metaclass=abc.ABCMeta):3.
_flyingobjects = []4.
def __init__(self, name):5.

self._in_air = False6.
self.name = name7.
type(self)._flyingobjects.append(self)8.

9.
@abc.abstractmethod10.
def take_off(self):11.

self._in_air = True12.
13.

@abc.abstractmethod14.
def land(self):15.

self._in_air = False16.
17.

@classmethod18.
def flying_objects(cls):19.

return cls._flyingobjects20.
21.

def __str__(self):22.
return self.name23.

Now, we get an error when we attempt to create an instance of FlyingObject:

210 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

>>> from FlyingObject import FlyingObject
>>> ufo = FlyingObject('UFO')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: Can't instantiate abstract class FlyingObject with abstract methods land,
take_off

We also get an error if we attempt to create (and then instantiate) a subclass of FlyingObject without
implementing all the abstract methods:

Demo 5.23: classes-objects/Demos/Plane2.py

from FlyingObject import FlyingObject1.
2.

class Plane(FlyingObject):3.
4.

@property5.
def pilot_awake(self):6.

return True7.
def take_off(self):8.

if self.pilot_awake:9.
super().take_off()10.

self._in_air = True11.

Let’s try to instantiate a Plane object:

>>> from Plane2 import Plane
>>> plane = Plane()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: Can't instantiate abstract class Plane with abstract methods land

As you can see, the attempt to create a Plane instance fails because the Plane class doesn’t define a
land() method.

We can fix the problem with the Plane class by defining the land() method:

LESSON 5: Classes and Objects | 211

EVALUATION COPY: Not to be used in class.

Demo 5.24: classes-objects/Demos/Plane3.py

from FlyingObject import FlyingObject1.
2.

class Plane(FlyingObject):3.
_planes = []4.
_flying_objects = []5.
def __init__(self, name):6.

super().__init__(name)7.
type(self)._planes.append(self)8.
self._over_land = True9.

10.
def take_off(self):11.

super().take_off()12.
13.

def land(self):14.
if self.over_land:15.

super().land()16.
17.

@classmethod18.
def planes(cls):19.

return cls._planes20.
21.

@property22.
def over_land(self):23.

return self._over_land24.
25.

@over_land.setter26.
def over_land(self, over_land):27.

self._over_land = over_land28.

Now, we can successfully instantiate a Plane object:

>>> from Plane3 import Plane
>>> plane = Plane('Air Force One')
>>> print(FlyingObject.flying_objects()[0])
Air Force One

And, just to be complete, here’s our Bird class:

212 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

Demo 5.25: classes-objects/Demos/Bird.py

from FlyingObject import FlyingObject1.
2.

class Bird(FlyingObject):3.
_birds = []4.
def __init__(self, name):5.

super().__init__(name)6.
type(self)._birds.append(self)7.
self._healthy_wings = True8.

9.
def take_off(self):10.

if self.healthy_wings:11.
super().take_off()12.

13.
def land(self):14.

super().land()15.
16.

@classmethod17.
def birds(cls):18.

return cls._birds19.
20.

@property21.
def healthy_wings(self):22.

return self._healthy_wings23.
24.

@healthy_wings.setter25.
def healthy_wings(self, healthy):26.

self._healthy_wings = healthy27.

The following script makes use of both the Bird and Plane classes:

LESSON 5: Classes and Objects | 213

EVALUATION COPY: Not to be used in class.

Demo 5.26: classes-objects/Demos/flying_objects.py

from Plane import Plane31.
from Bird import Bird2.
from FlyingObject import FlyingObject3.

4.
p1 = Plane('Spirit of St. Louis')5.
p2 = Plane('Air Force One')6.
b1 = Bird('Big Bird')7.
b2 = Bird('Roadrunner')8.
b2.healthy_wings = False9.
b3 = Bird('Tweety')10.

11.
p1.take_off()12.
p1.over_land = False13.
p1.land()14.

15.
b1.take_off()16.
b2.take_off()17.

18.
print('Flying Objects:')19.
for object in p1.flying_objects():20.

print(object)21.
print('-----------')22.

23.
print('Planes:')24.
for plane in p1.planes():25.

print(plane)26.
print('-----------')27.

28.
print('Birds:')29.
for bird in b1.birds():30.

print(bird)31.

Beginning on line 20, we iterate through p1.flying_objects(), but we could iterate through
flying_objects() on any Plane or Bird object to see all the instances of FlyingObject subclasses.

Run this file in the terminal. You should get the following results:

214 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

…/classes-objects/Demos> python flying_objects.py
Flying Objects:
Spirit of St. Louis
Air Force One
Big Bird
Roadrunner
Tweety

Planes:
Spirit of St. Louis
Air Force One

Birds:
Big Bird
Roadrunner
Tweety

EVALUATION COPY: Not to be used in class.

❋

5.14. Understanding Decorators

We have mentioned several decorators in this lesson but have not explained what a decorator is.
Decorators are functions that add functionality to (i.e., “decorate”) other functions. They take a function
as an argument and return a different function. Remember that functions are objects and objects can
be passed from function to function. The following code illustrates this:

LESSON 5: Classes and Objects | 215

EVALUATION COPY: Not to be used in class.

Demo 5.27: classes-objects/Demos/decorator1.py

def foo(f):1.
print(f)2.
def foo_inner():3.

pass4.
return foo_inner5.

6.
def bar():7.

pass8.
9.

print(bar)10.
bar = foo(bar)11.
print(bar)12.

Running this file will output:

…/classes-objects/Demos> python .\decorator1.py
<function bar at 0x0129B538>
<function bar at 0x0129B538>
<function foo.<locals>.foo_inner at 0x0129B4F0>

1. On line 10, we print bar and see that it is a function object. 0x0129B538 is the object’s
unique memory address.

2. On line 11, we call foo() and pass it the bar function object. The foo() function prints
out the object (line 2). And we can see that it prints exactly the same thing, meaning that the
local variable f is pointing to the bar() function defined on lines 7 and 8.

3. On lines 3 and 4, we define foo_inner(), which is a function local to the foo() function,
meaning it can only be called from within foo(), unless foo() returns it, which it does.

4. Back on line 11, we overwrite the bar variable with whatever foo() returns, which is the the
foo_inner() function.

5. On line 12, we print bar and see that it now contains a different function: the local
foo_inner() function. Because bar is global, foo_inner() can now be called from anywhere.

The main takeaway from this is that functions can be passed around just like any other object.

Now, let’s take a look at an example of how we can decorate a function with a decorator:

216 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

Demo 5.28: classes-objects/Demos/decorator2.py

from datetime import datetime1.
2.

def format_report(f):3.
def inner(text):4.

print('MY REPORT')5.
print('-' * 50)6.
f(text)7.
print('-' * 50)8.
print('Report completed: {}.'.format(datetime.now()))9.

return inner10.
11.

def report(text):12.
print(text)13.

14.
report = format_report(report)15.

16.
report('I have created my first decorator.')17.

Here is the output:

…/classes-objects/Demos> python decorator2.py
MY REPORT
--
I have created my first decorator.
--
Report completed: 2023-04-01 20:16:55.607922.

1. Look at the report() function on lines 12 and 13. All it does is print the text that is passed
in.

2. On line 15, the report function is passed to format_report(), which defines and later
returns an inner() function. This inner() function:

A. Prints a couple of lines of text.
B. Runs the passed-in function.
C. Prints another couple of lines of text.

3. Back on line 15, we overwrite the report variable with the function object returned by
format_report().

LESSON 5: Classes and Objects | 217

EVALUATION COPY: Not to be used in class.

4. Now, on line 17, when we call report(), it runs the inner() function returned by
format_report().

Can you see how format_report() is decorating (i.e., adding functionality to) the report() function?
Of course, format_report() doesn’t do anything terribly exciting, but a decorator can do anything
you want it to do. For example, it could keep an event log or send an email.

There is a special decorator syntax, which you have already seen when creating properties and static,
class and abstract methods. Instead of explicitly overwriting a function variable with the function
returned by a decorator (e.g., report = format_report(report)), you indicate that the function
will be decorated like this:

Demo 5.29: classes-objects/Demos/decorator3.py

from datetime import datetime1.
2.

def format_report(f):3.
def inner(text):4.

print('MY REPORT')5.
print('-' * 50)6.
f(text)7.
print('-' * 50)8.
print('Report completed: {}.'.format(datetime.now()))9.

return inner10.
11.

@format_report12.
def report(text):13.

print(text)14.
15.

report('I have created my second decorator.')16.

Run this and you will see that it returns something similar to what decorator2.py returned:

…/classes-objects/Demos> python decorator3.py
MY REPORT
--
I have created my second decorator.
--
Report completed: 2023-04-01 21:18:35.833127.

This should give you a better understanding of how the @property, @staticmethod, @classmethod,
and @abc.abstractmethod are working behind the scenes.

218 | LESSON 5: Classes and Objects

EVALUATION COPY: Not to be used in class.

Conclusion

In this lesson, you have learned how to create Python classes and write object-oriented code.

LESSON 5: Classes and Objects | 219

EVALUATION COPY: Not to be used in class.

	Advanced Python Concepts
	Lambda Functions
	Advanced List Comprehensions
	Exercise 1: Rolling Five Dice
	Collections Module
	Exercise 2: Creating a defaultdict
	Counters
	Exercise 3: Creating a Counter
	Mapping and Filtering
	Mutable and Immutable Built-in Objects
	Sorting
	Exercise 4: Converting list.sort() to sorted(iterable)
	Sorting Sequences of Sequences
	Creating a Dictionary from Two Sequences
	Unpacking Sequences in Function Calls
	Exercise 5: Converting a String to a datetime.date Object
	Modules and Packages

	Regular Expressions
	Regular Expression Tester
	Regular Expression Syntax
	Python’s Handling of Regular Expressions
	Exercise 6: Green Glass Door

	Working with Data
	Virtual Environment
	Relational Databases
	Passing Parameters
	SQLite
	Exercise 7: Querying a SQLite Database
	SQLite Database in Memory
	Exercise 8: Inserting File Data into a Database
	Drivers for Other Databases
	CSV
	Exercise 9: Finding Data in a CSV File
	Creating a New CSV File
	Exercise 10: Creating a CSV with DictWriter
	Getting Data from the Web
	Exercise 11: HTML Scraping
	XML
	JSON
	Exercise 12: JSON Home Runs

	Testing and Debugging
	Testing for Performance
	Exercise 13: Comparing Times to Execute
	The unittest Module
	Exercise 14: Fixing Functions
	Special unittest.TestCase Methods

	Classes and Objects
	Attributes
	Behaviors
	Classes vs. Objects
	Attributes and Methods
	Exercise 15: Adding a roll() Method to Die
	Private Attributes
	Properties
	Exercise 16: Properties
	Objects that Track their Own History
	Documenting Classes
	Exercise 17: Documenting the Die Class
	Inheritance
	Exercise 18: Extending the Die Class
	Extending a Class Method
	Exercise 19: Extending the roll() Method
	Static Methods
	Class Attributes and Methods
	Abstract Classes and Methods
	Understanding Decorators

