
Advanced JavaScript
Concepts

with examples and
hands-on exercises

WEBUCATOR

Copyright © 2023 by Webucator. All rights reserved.

No part of this manual may be reproduced or used in any manner without written permission of the
copyright owner.

Version: 1.1.0

The Authors

Nat Dunn

Nat Dunn is the founder of Webucator (www.webucator.com), a company that has provided training
for tens of thousands of students from thousands of organizations. Nat started the company in 2003
to combine his passion for technical training with his business expertise, and to help companies benefit
from both. His previous experience was in sales, business and technical training, and management. Nat
has an MBA from Harvard Business School and a BA in International Relations from Pomona College.

Follow Nat on Twitter at @natdunn and Webucator at @webucator.

Chris Minnick

Chris Minnick, the co-founder of WatzThis?, has overseen the development of hundreds of web and
mobile projects for customers from small businesses to some of the world’s largest companies. A prolific
writer, Chris has authored and co-authored books and articles on a wide range of Internet-related topics
including HTML, CSS, mobile apps, e-commerce, e-business, Web design, XML, and application
servers. His published books include Adventures in Coding, JavaScript For Kids For Dummies, Writing
Computer Code, Coding with JavaScript For Dummies, Beginning HTML5 and CSS3 For Dummies,
Webkit For Dummies, CIW E-Commerce Designer Certification Bible, and XHTML.

Class Files

Download the class files used in this manual at
https://static.webucator.com/media/public/materials/classfiles/JSC151-1.1.0-advanced-javascript-concepts.zip.

Errata

Corrections to errors in the manual can be found at https://www.webucator.com/books/errata/.

https://static.webucator.com/media/public/materials/classfiles/JSC151-1.1.0-advanced-javascript-concepts.zip
https://www.webucator.com/books/errata/

Table of Contents

LESSON 1. Advanced JavaScript Concepts..1
Node.js...2
Scope, var, let, and const..4
Arrow Functions...7
Rest Parameters..11
Spread Operator...12
Array Destructuring..14
Template Literals..16
Objects...17
The this Object...18
Array map() Method...20
Array filter() Method..24
Array find() Method..26
JavaScript Modules...28
npm..34

Table of Contents | i

LESSON 1
Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

Topics Covered

 Block-scoped variables.

 Constants.

 Arrow functions.

 Rest parameters.

 The spread operator.

 Array destructuring.

 Template literals.

 Objects, Context, and the this object.

 The map(), find(), and filter() methods of arrays.

 JavaScript modules.

 Node.js and package managers.

Introduction

In this lesson, you’ll dive a little deeper into JavaScript and learn some of its more advanced features.
These features are particularly useful to know when working with JavaScript frameworks such as React,
Vue, and Angular.

EVALUATION COPY: Not to be used in class.

❋

LESSON 1: Advanced JavaScript Concepts | 1

EVALUATION COPY: Not to be used in class.

1.1. Node.js

Node.js, pronounced to rhyme with “Toads say yes” and often referred to as just Node, is a JavaScript
runtime that makes it easy to run JavaScript anywhere, not just in a web browser. Its original purpose
and most common use is to create server-side web applications. Many JavaScript frameworks, including
React, Vue, and Angular, make use of Node to create web applications.

Installing Node

See https://www.webucator.com/article/nodejs-and-node-package-manager-npm/
for instructions on checking to see if you have Node installed, and to install it if you don’t. The
instructions also show how to install npm, which we will cover later in this lesson. You should
make sure you have that installed as well.

Node can be used for other purposes as well. For example, Node makes it possible to run JavaScript
files at the command line, which is great for testing your JavaScript code. To run a JavaScript file at
the command line, simply navigate to the folder that file is in and run node file-name.js:

PS …\AdvancedJSConcepts\Demos> node file-name.js

Let’s give it a try. In AdvancedJSConcepts/Demos, you will see a file called hello-world.js that
simply outputs “Hello, world!” to the console:

Demo 1.1: AdvancedJSConcepts/Demos/hello-world.js

console.log('Hello, world!');1.

Code Explanation

To run this file:

1. Navigate to AdvancedJSConcepts/Demos in the terminal.

2. Run node hello-world.js

3. You should see something like this:

PS …\AdvancedJSConcepts\Demos> node hello-world.js
Hello, world!

2 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

https://www.webucator.com/article/nodejs-and-node-package-manager-npm/

 1.1.1. Node Shell

In addition to running JavaScript files, Node also allows you to run JavaScript at the command line
using the Node shell. Type node at the command prompt to activate the Node shell:

PS …\AdvancedJSConcepts\Demos> node
Welcome to Node.js v13.7.0.
Type ".help" for more information.
>

Then you can start writing JavaScript:

> const fruit = ['banana', 'apple', 'peach'];
undefined
> for (frt of fruit) {
... console.log('I love a good ' + frt + '!');
... }
I love a good banana!
I love a good apple!
I love a good peach!
undefined

The undefined output simply means that the statement didn’t return anything.

To exit the Node shell, run .exit or press Ctrl+D.

Node Version Manager (nvm)

You can run multiple versions of Node on the same computer using nvm for Mac and Linux
(https://github.com/nvm-sh/nvm) or nvm-windows for Windows
(https://github.com/coreybutler/nvm-windows).

EVALUATION COPY: Not to be used in class.

❋

LESSON 1: Advanced JavaScript Concepts | 3

EVALUATION COPY: Not to be used in class.

https://github.com/nvm-sh/nvm
https://github.com/coreybutler/nvm-windows

1.2. Scope, var, let, and const

Scope refers to the context in which an object can be referenced. JavaScript used to allow for only two
scopes: global and function. All variables were declared with the var keyword. Variables declared in a
function were scoped to that function, meaning that they are not visible outside of that function. All
other variables were globally scoped, meaning that they are visible everywhere.

JavaScript now allows for block scoping. This is done with the let keyword for variables and the const
keyword for constants. Blocks are denoted with curly braces. Constants declared with const and
variables declared with let are visible within the block in which they are declared and all subblocks.
If they are declared globally, they are visible everywhere.

Consider the following demo:

4 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

Demo 1.2: AdvancedJSConcepts/Demos/scope.js

if (true) {1.
let aLet = 'aLet'; // block scoped2.
var aVar = 'aVar'; // global3.
const A_CONST = 'A_CONST'; // block scoped4.
console.log('Found ' + aLet + ' in block.');5.
console.log('Found ' + aVar + ' in block.');6.
console.log('Found ' + A_CONST + ' in block.');7.

}8.
console.log('---------');9.

10.
try {11.
console.log('Found ' + aLet + ' in global scope.');12.

} catch(e) {13.
console.log('Did not find aLet in global scope.');14.

}15.
16.

try {17.
console.log('Found ' + aVar + ' in global scope.');18.

} catch(e) {19.
console.log('Did not find aVar in global scope.');20.

}21.
22.

try {23.
console.log('Found ' + A_CONST + ' in global scope.');24.

} catch(e) {25.
console.log('Did not find A_CONST in global scope.');26.

}27.
console.log('---------');28.

29.
function outputLet() {30.
try {31.
console.log('Found ' + aLet + ' in function.');32.

} catch(e) {33.
console.log('Did not find aLet in function.');34.

}35.
}36.

37.
function outputVar() {38.
try {39.
console.log('Found ' + aVar + ' in function.');40.

} catch(e) {41.
console.log('Did not find aVar in function.');42.

}43.
}44.

LESSON 1: Advanced JavaScript Concepts | 5

EVALUATION COPY: Not to be used in class.

45.
function outputConst() {46.
try {47.
console.log('Found ' + A_CONST + ' in function.');48.

} catch(e) {49.
console.log('Did not find A_CONST in function.');50.

}51.
}52.

53.
outputLet();54.
outputVar();55.
outputConst();56.

Code Explanation

Run the file with Node. You will get the following output:

PS …\AdvancedJSConcepts\Demos> node scope.js
Found aLet in block.
Found aVar in block.
Found A_CONST in block.

Did not find aLet in global scope.
Found aVar in global scope.
Did not find A_CONST in global scope.

Did not find aLet in function.
Found aVar in function.
Did not find A_CONST in function.

Note that aLet, aVar, and A_CONST were all declared within a block, so it makes sense that all three
can be found within that same block. But notice that aVar can also be found in the global scope and
in the function scope; whereas aLet and aConst cannot. That is because variables declared with the
let keyword and constants are block scoped. As a rule, you should avoid declaring variables with var.

 1.2.1. When Constants aren’t Constant

When you declare a constant, you create a pointer to a specific object. You may not change that pointer
(i.e., you cannot assign a new value to a constant), but you can change the object that is assigned to
the constant. Consider the following demo:

6 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

Demo 1.3: AdvancedJSConcepts/Demos/constants.js

const a = ['banana', 'apple'];1.
2.

console.log(a);3.
4.

// OK to change object constant points to.5.
a.push('peach');6.

7.
console.log(a);8.

9.
try {10.
// Not OK to assign new value to constant.11.
a = ['banana', 'apple', 'peach', 'cherry'];12.

} catch(e) {13.
console.log('Error: ' + e.message);14.

}15.

Code Explanation

Run the file with Node. You will get the following output:

PS …\AdvancedJSConcepts\Demos> node constants.js
['banana', 'apple']
['banana', 'apple', 'peach']
Error: Assignment to constant variable.

Note that appending to the array assigned to a is fine, but when we try to assign a new value to the
constant, we get an error.

EVALUATION COPY: Not to be used in class.

❋

1.3. Arrow Functions

Arrow functions (also called fat-arrow functions because they use the => operator) are a more compact
way of writing JavaScript functions. The syntax is shown below:

LESSON 1: Advanced JavaScript Concepts | 7

EVALUATION COPY: Not to be used in class.

(parameters) => {
// function body
}

To illustrate, consider this simple function, which squares x and returns the result:

function square(x) {
return x * x;

}

The fat-arrow version of this function could be written like this:

(x) => {
return x * x;

}

Notice that this function doesn’t have a name, but you can give it one by assigning it to a constant:

const square = (x) => {
return x * x;

}

You call this function in the same way that you call a function created in the standard way:

square(2);

 1.3.1. Shortening Arrow Functions

Fat-arrow functions that only have a return statement can be made shorter by removing the curly
braces. When a single statement follows the fat-arrow operator, that statement is evaluated and returned.
This is the equivalent of the function above:

const square = (x) => x * x;

And when a fat-arrow function takes only one parameter, you do not need to wrap that parameter in
parentheses:

8 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

const square = x => x * x;

Try this at the Node shell:

> const square = x => x * x;
undefined
> square(5);
25

While these last methods are brief, they are more difficult to understand. In practice, you may prefer
explicitly returning a value. However, it is not unlikely that you will come across code like we have
shown above (Vue uses this!), so you should understand how it works.

The following demo includes all of these fat-arrow examples:

LESSON 1: Advanced JavaScript Concepts | 9

EVALUATION COPY: Not to be used in class.

Demo 1.4: AdvancedJSConcepts/Demos/fat-arrow.js

// Standard function1.
function square(x) {2.
return x * x;3.

}4.
5.

let result = square(2);6.
console.log(result);7.

8.
// fat-arrow function9.
const square2 = (x) => {10.
return x * x;11.

};12.
13.

result = square2(3);14.
console.log(result);15.

16.
// briefer fat-arrow function17.
// when curly braces aren't included, the expression18.
// to the right of the fat arrow is evaluated and returned.19.
const square3 = (x) => x * x;20.

21.
result = square3(4);22.
console.log(result);23.

24.
// briefest fat-arrow function25.
// when only one parameter is passed, parenthese26.
// are not required.27.
const square4 = x => x * x;28.

29.
result = square4(5);30.
console.log(result);31.

Code Explanation

Run the file with Node. You will get the following output:

PS …\AdvancedJSConcepts\Demos> node fat-arrow.js
4
9
16
25

10 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

EVALUATION COPY: Not to be used in class.

❋

1.4. Rest Parameters

A rest parameter is denoted with three periods preceding a variable name (e.g., ...myVar) and takes
all the rest of the arguments passed to the function and packs them into an array. It must be the last
parameter in a parameter list. Consider the following code:

Demo 1.5: AdvancedJSConcepts/Demos/rest-param-1.js

function addNums(...nums) {1.
let total = 0;2.
for (let num of nums) {3.
total += num;4.

}5.
const equation = nums.join(' + ') + ' = ' + String(total);6.
console.log(equation);7.

}8.
9.

addNums(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);10.

Code Explanation

Run the file with Node. You will get the following output:

PS …\AdvancedJSConcepts\Demos> node rest-param-1.js
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55

Here is another example, which shows a function that takes a rest parameter in addition to another
parameter. Remember that the the rest parameter must be the last parameter in the function:

LESSON 1: Advanced JavaScript Concepts | 11

EVALUATION COPY: Not to be used in class.

Demo 1.6: AdvancedJSConcepts/Demos/rest-param-2.js

function countMarbles(personName, ...marbles) {1.
console.log(personName + ' has ' + marbles.length + ' marbles.');2.

}3.
4.

countMarbles('Joe', 'blue', 'green', 'yellow');5.

Code Explanation

Run the file with Node. You will get the following output:

PS …\AdvancedJSConcepts\Demos> node rest-param-2.js
Joe has 3 marbles.

EVALUATION COPY: Not to be used in class.

❋

1.5. Spread Operator

The spread operator is also created using three periods, but it does the opposite of the rest parameter.
The spread operator starts with an array or object and “spreads” it out into individual variables, as you
can see in this demo:

Demo 1.7: AdvancedJSConcepts/Demos/spread-operator-1.js

const fruits = ['banana', 'apple', 'peach', 'cherry'];1.
2.

console.log(fruits); // Outputs array3.
console.log(...fruits); // Outputs each string in array individually4.

Code Explanation

Run the file with Node. You will see that the spread operator separates the array into parts:

12 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

PS …\AdvancedJSConcepts\Demos> node spread-operator-1.js
['banana', 'apple', 'peach', 'cherry']
banana apple peach cherry

The following example shows how to use the spread operator to append one array onto another:

Demo 1.8: AdvancedJSConcepts/Demos/spread-operator-2.js

const fruits = ['banana', 'apple', 'peach', 'cherry'];1.
const veggies = ['squash', 'spinach', 'asparagus', 'peas'];2.

3.
const foods = [];4.

5.
// Attempt 16.
foods.push(fruits);7.
foods.push(veggies);8.

9.
console.log('ATTEMPT 1:');10.
console.log(foods); // foods will contain an array of arrays11.

12.
// Clear foods13.
foods.length = 0;14.

15.
// Attempt 216.
foods.push(...fruits);17.
foods.push(...veggies);18.

19.
console.log('---------');20.
console.log('ATTEMPT 2:');21.
console.log(foods); // foods will now contain an array of strings22.

Code Explanation

Run the file with Node. You will get the following output:

LESSON 1: Advanced JavaScript Concepts | 13

EVALUATION COPY: Not to be used in class.

PS …\AdvancedJSConcepts\Demos> node spread-operator-2.js
ATTEMPT 1:
[['banana', 'apple', 'peach', 'cherry'],
['squash', 'spinach', 'asparagus', 'peas']]

ATTEMPT 2:
['banana',
'apple',
'peach',
'cherry',
'squash',
'spinach',
'asparagus',
'peas']

Notice that when we don’t use the spread operator, the full fruits and veggies arrays are pushed
onto the foods array, creating an array of arrays. Using the spread operator breaks the fruits and
veggies arrays into parts and pushes those parts onto the foods array.

EVALUATION COPY: Not to be used in class.

❋

1.6. Array Destructuring

It is possible to assign the elements of an array to individual constants or variables using the following
syntax:

const fruit = ['apple', 'banana', 'cherry'];
const [a, b, c] = fruit;

After running this, a will contain ‘apple’, b will contain ‘banana’, and c will contain ‘cherry’.

Array destructuring is often used with functions that return arrays, as shown in the following demo:

14 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

Demo 1.9: AdvancedJSConcepts/Demos/array-destructuring.js

// Return a random integer1.
function randInt(low, high) {2.
const rndDec = Math.random();3.
const rndInt = Math.floor(rndDec * (high - low + 1) + low);4.
return rndInt;5.

}6.
7.

// Return a random president as an array: [firstName, lastName]8.
function randPresident() {9.
const presidents = [10.
'George Washington',11.
'Thomas Jefferson',12.
'Abraham Lincoln',13.
'Teddy Roosevelt',14.
'Richard Nixon',15.
'Ronald Reagan',16.
'Barack Obama'17.

];18.
19.

const i = randInt(0, presidents.length-1);20.
return presidents[i].split(' ');21.

}22.
23.

const [firstName, lastName] = randPresident();24.
console.log('First name:', firstName);25.
console.log('Last name:', lastName);26.

Code Explanation

Run the file with Node. You will get the following output (presidents will vary):

PS …\AdvancedJSConcepts\Demos> node array-destructuring.js
First name: Thomas
Last name: Jefferson

EVALUATION COPY: Not to be used in class.

❋

LESSON 1: Advanced JavaScript Concepts | 15

EVALUATION COPY: Not to be used in class.

1.7. Template Literals

When you use the concatenation operator (+) to combine literal text and variables, the code can get a
little ugly:

const myGreeting = 'Hello, ' + personName + '. The date and time is ' + datetime + '.';

This code can be written in a cleaner way using template literals, which are enclosed with back-ticks
(`). Template literals can contain placeholders, which are denoted with dollar signs and curly braces
(e.g., ${expression}). The concatenated string above can be rewritten like this using a template
literal:

const myGreeting = `Hello, ${personName}. The date and time is ${datetime}.`;

Try this in the Node shell:

> const datetime = new Date().toLocaleString();
undefined
> const personName = 'Nat Dunn';
undefined
> const myGreeting = `Hello, ${personName}. The current date and time is ${datetime}.`;
undefined
> myGreeting;
'Hello, Nat Dunn. The current date and time is 5/13/2022, 7:51:01 AM.'

And here is an example that spans multiple lines:

Demo 1.10: AdvancedJSConcepts/Demos/template-literals.js

function madLib(name, characteristic, verb, adjective) {1.
const haiku = `${name} is ${characteristic}2.

I ${verb} with ${name} often3.
How ${adjective} I am`;4.
console.log(haiku);5.

}6.
7.

madLib('Mary', 'merry', 'sing', 'lucky');8.

16 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

Code Explanation

Run the file with Node. You will get the following output:

PS …\AdvancedJSConcepts\Demos> node template-literals.js
Mary is merry
I sing with Mary often
How lucky I am

As demonstrated, template literals can include multiple lines. If you want to add line breaks to format
your code, but don’t want those line breaks to be part of the literal, you must escape the newline with
a backslash (\) like this:

const sentence = `This sentence should not include any newline characters \
but I am breaking it across lines in my code so that I don’t \
have to scroll horizontally.`;

EVALUATION COPY: Not to be used in class.

❋

1.8. Objects

You have worked a lot with objects already. Arrays are objects. Elements on an HTML page are objects.
String, Number, Date and Math are built-in JavaScript objects. Essentially, everything except primitive
types, like simple strings and numbers, is an object. And even simple strings and numbers can be treated
like objects.

So, what is an object? An object is something that has properties and/or methods. Some examples:

1. An Array object has a length property and a find() method.

2. An HTML Element object has an innerHTML property and an addEventListener()
method.

3. A Date object has a getFullYear() method.

You can create your own objects in two ways:

LESSON 1: Advanced JavaScript Concepts | 17

EVALUATION COPY: Not to be used in class.

1. With a constructor function and the new keyword:

function Building(name, location) {
this.name = name;
this.location = location;
this.logLocation = function() {
document.getElementById('build').innerHTML = this.location;

}
}

const whiteHouse = new Building('White House',
'1600 Pennsylvania Ave.');

Note that constructor functions are just regular functions, but they are meant to be called
using the new keyword, in which case, they construct a new object. By convention, the first
letter of a constructor function should be capitalized, making it clear that it is a constructor
function.

2. With literal notation:

const whiteHouse = {
name: 'White House',
location: '1600 Pennsylvania Ave.',
logLocation: function() {
document.getElementById('build').innerHTML = this.location;

}
};

As a general rule, you would use the constructor approach if you plan to create many objects of the
same type and use the literal syntax approach if you’re just creating a one-off object.

1.8. The this Object

JavaScript’s this object is complex, but there are a few essential things that you need to understand:

1. Code within an object is said to be in that object’s context.

2. The global context refers to the context of the top-level object. In browsers, the global context
is the context within the window object.

3. Within an object, this refers to the object it is within. So, in browsers, this refers to the
global context (the window object) unless it is used within another object.

18 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

The easiest way to understand this is to consider an example:

Demo 1.11: AdvancedJSConcepts/Demos/this.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width, initial-scale=1">5.
<script>6.
function Building(name, location) {7.
this.name = name;8.
this.location = location;9.
this.logLocation = function() {10.
document.getElementById('build').innerHTML = this.location;11.

}12.
console.log('From Building: ', window.location === this.location);13.

}14.
15.

window.addEventListener('load', (e) => {16.
document.getElementById('win').innerHTML = this.location;17.
const whiteHouse = new Building('White House',18.

'1600 Pennsylvania Ave.');19.
whiteHouse.logLocation();20.

});21.
22.

console.log('From Global: ', window.location === this.location);23.
</script>24.
<title>this Object</title>25.
</head>26.
<body>27.
<div id="win"></div>28.
<hr>29.
<div id="build"></div>30.

</body>31.
</html>32.

Code Explanation

Open this file in the browser:

LESSON 1: Advanced JavaScript Concepts | 19

EVALUATION COPY: Not to be used in class.

Notice that this.location outputs the location property of window when called from the global
context, but it outputs the location property of the Building object when called from that object’s
method.

Also, notice the output in the console, which shows that this.location and window.location are
the same when referenced in the global context, but not when referenced within the Building object.

EVALUATION COPY: Not to be used in class.

❋

1.9. Array map() Method

The map() method of JavaScript arrays passes each value of the array to a callback function to create
a new array based on the values of the original array. Consider the following code:

20 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

Demo 1.12: AdvancedJSConcepts/Demos/without-map.js

function cube(num) {1.
return num * num * num;2.

}3.
4.

const nums = [1, 2, 3, 4, 5, 6, 7, 8, 9];5.
6.

const cubes = [];7.
for (let num of nums) {8.
cubes.push(cube(num));9.

}10.
11.

console.log(cubes);12.

Code Explanation

Run the file with Node. You will get the following output:

PS …\AdvancedJSConcepts\Demos> node without-map.js
[1, 8, 27, 64, 125, 216, 343, 512, 729]

This code loops through the nums array, passes each element of the array to the cube() function, and
pushes the result onto the cubes array.

The for loop in the preceding code can be replaced with this:

const cubes = nums.map(cube);

nums.map(cube) creates a new array by passing each element in nums to cube().

As the following demo shows, this can be done with an anonymous function as well:

LESSON 1: Advanced JavaScript Concepts | 21

EVALUATION COPY: Not to be used in class.

Demo 1.13: AdvancedJSConcepts/Demos/map-1.js

function cube(num) {1.
return num * num * num;2.

}3.
4.

const nums = [1, 2, 3, 4, 5, 6, 7, 8, 9];5.
6.

// with named function7.
const cubes = nums.map(cube);8.

9.
console.log(cubes);10.

11.
// with anonymous fat-arrow function12.
const squares = nums.map((num) => num * num);13.

14.
console.log(squares);15.

16.
// Note that nums is unchanged by the map() calls17.
console.log(nums); // unchanged18.

Code Explanation

Run the file with Node. You will get the following output:

PS …\AdvancedJSConcepts\Demos> node map-1.js
[1, 8, 27, 64, 125, 216, 343, 512, 729]
[1, 4, 9, 16, 25, 36, 49, 64, 81]
[1, 2, 3, 4, 5, 6, 7, 8, 9]

The preceding code uses a named function to create the cubes array and an anonymous function to
create the squares array. Notice that map() does not alter the original array.

The following demos show how to use map() to create an HTML select list from an array of values.
The first demo uses a named function and the second demo uses an anonymous function:

22 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

Demo 1.14: AdvancedJSConcepts/Demos/map-2.js

function createOption(value) {1.
return `<option value='${value}'>${value}</option>`;2.

}3.
4.

function createSelect(values) {5.
let select = '<select>\n';6.
let options = values.map(createOption);7.
for (option of options) {8.
select += '\t' + option + '\n';9.

}10.
select += '</select>';11.
return select;12.

}13.
14.

const fruits = ['banana', 'apple', 'peach', 'cherry'];15.
let select = createSelect(fruits);16.
console.log(select);17.

Demo 1.15: AdvancedJSConcepts/Demos/map-3.js

function createSelect(values) {1.
let select = '<select>\n';2.
const options = values.map((value) =>3.
`<option value='${value}'>${value}</option>`4.

);5.
for (option of options) {6.
select += '\t' + option + '\n';7.

}8.
select += '</select>';9.
return select;10.

}11.
12.

const fruits = ['banana', 'apple', 'peach', 'cherry'];13.
let select = createSelect(fruits);14.
console.log(select);15.

Both of the files above will output a select list, which you could then inject into innerHTML of an
element on the page:

LESSON 1: Advanced JavaScript Concepts | 23

EVALUATION COPY: Not to be used in class.

PS …\AdvancedJSConcepts\Demos> node map-2.js
<select>

<option value='banana'>banana</option>
<option value='apple'>apple</option>
<option value='peach'>peach</option>
<option value='cherry'>cherry</option>

</select>

EVALUATION COPY: Not to be used in class.

❋

1.10. Array filter() Method

The filter() method of JavaScript arrays passes each value of the array to a callback testing function
to create a new array containing only those values that passed the test. Consider the following code:

Demo 1.16: AdvancedJSConcepts/Demos/without-filter.js

function isOdd(num) {1.
return num % 2 === 1;2.

}3.
4.

const nums = [1, 2, 3, 4, 5, 6, 7, 8, 9];5.
6.

const oddNumbers = [];7.
for (let num of nums) {8.
if (isOdd(num)) {9.
oddNumbers.push(num);10.

}11.
}12.

13.
console.log(oddNumbers);14.

Code Explanation

Run the file with Node. You will get the following output:

PS …\AdvancedJSConcepts\Demos> node without-filter.js
[1, 3, 5, 7, 9]

24 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

This code loops through the nums array, passes each element of the array to the isOdd() function,
and, if isOdd() returns true, pushes the element onto the oddNumbers array.

The for loop in the preceding example can be replaced with the following code:

const oddNumbers = nums.filter(isOdd);

nums.filter(isOdd) creates a new array from nums that only includes those values that pass the
isOdd() test.

As the following demo shows, this can be done with an anonymous function as well:

Demo 1.17: AdvancedJSConcepts/Demos/filter.js

function isOdd(num) {1.
return num % 2 === 1;2.

}3.
4.

const nums = [1, 2, 3, 4, 5, 6, 7, 8, 9];5.
6.

// with named function7.
const oddNumbers = nums.filter(isOdd);8.

9.
console.log(oddNumbers);10.

11.
// with anonymous fat-arrow function12.
const evenNumbers = nums.filter((num) => num % 2 === 0);13.

14.
console.log(evenNumbers);15.

16.
// Note that nums is unchanged by the filter() calls17.
console.log(nums);18.

Code Explanation

Run the file with Node. You will get the following output:

PS …\AdvancedJSConcepts\Demos> node filter.js
[1, 3, 5, 7, 9]
[2, 4, 6, 8]
[1, 2, 3, 4, 5, 6, 7, 8, 9]

LESSON 1: Advanced JavaScript Concepts | 25

EVALUATION COPY: Not to be used in class.

This uses a named function to create the oddNumbers array and an anonymous function to create the
evenNumbers array. Notice that filter() does not alter the original array.

EVALUATION COPY: Not to be used in class.

❋

1.11. Array find() Method

The find() method of JavaScript arrays iterates through an array passing each element to a callback
testing function until one of those elements passes the test, at which point, it returns that element. If
no element passes the test, it returns undefined. Consider the following code:

Demo 1.18: AdvancedJSConcepts/Demos/without-find.js

function isAdult(person) {1.
return person.age >= 18;2.

}3.
4.

const people = [5.
{name: 'Cindy', age: 6},6.
{name: 'Bobby', age: 7},7.
{name: 'Jan', age: 10},8.
{name: 'Peter', age: 10},9.
{name: 'Marsha', age: 12},10.
{name: 'Greg', age: 13},11.
{name: 'Alice', age: 44}12.

]13.
14.

let firstAdult;15.
for (let person of people) {16.
if (isAdult(person)) {17.
firstAdult = person;18.
break;19.

}20.
}21.

22.
console.log(firstAdult);23.

26 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

Code Explanation

Run the file with Node. You will get the following output:

PS …\AdvancedJSConcepts\Demos> node without-find.js
{ name: 'Alice', age: 44 }

This code loops through the people array, passing each element of the array to the isAdult() function
until it finds an element that passes the isAdult() test, at which point it breaks out of the for loop.

In the following code, we do the same thing using the find() method:

Demo 1.19: AdvancedJSConcepts/Demos/find.js

function isAdult(person) {1.
return person.age >= 18;2.

}3.
4.

const people = [5.
{name: 'Cindy', age: 6},6.
{name: 'Bobby', age: 7},7.
{name: 'Jan', age: 10},8.
{name: 'Peter', age: 10},9.
{name: 'Marsha', age: 12},10.
{name: 'Greg', age: 13},11.
{name: 'Alice', age: 44}12.

]13.
14.

const firstAdult = people.find(isAdult);15.
16.

console.log(firstAdult);17.

Code Explanation

Run the file with Node and you will see that it also returns Alice:

PS …\AdvancedJSConcepts\Demos> node find.js
{ name: 'Alice', age: 44 }

LESSON 1: Advanced JavaScript Concepts | 27

EVALUATION COPY: Not to be used in class.

EVALUATION COPY: Not to be used in class.

❋

1.12. JavaScript Modules

JavaScript modules are files that either import or are imported into other JavaScript modules. JavaScript
frameworks, like React and Vue, use modules to make it easier to separate applications into components.

Consider the following directory structure:

The index.html file includes main.js using a <script> tag. Here’s the code:

Demo 1.20: AdvancedJSConcepts/Demos/dataview/index.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width, initial-scale=1">5.
<link href="styles.css" rel="stylesheet">6.
<script type="module" src="main.js"></script>7.
<title>My Data</title>8.
</head>9.
<body>10.
<div id="my-data"></div>11.

</body>12.
</html>13.

28 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

Code Explanation

Things to notice:

1. The script element has a type attribute set to “module”. This indicates that main.js may
import other modules.

2. There is no content in the body except for an empty div element with the id of “my-data”.
We will inject HTML into that element.

Now, take a look at main.js:

Demo 1.21: AdvancedJSConcepts/Demos/dataview/main.js

// import modules1.
import {init, addItem, removeItem} from './modules/data.js';2.
import create from './modules/list.js';3.

4.
// create data object5.
const data = init();6.

7.
// add items to data object8.
addItem(data, 'NY', 'New York');9.
addItem(data, 'CA', 'California');10.
addItem(data, 'TX', 'Texas');11.
addItem(data, 'FL', 'Florida');12.

13.
// remove an item from the data object14.
removeItem(data, 'CA');15.

16.
// call create, passing the data, the id of the target, and a heading17.
create(data, 'my-data', 'State Abbreviations');18.

Code Explanation

Things to notice:

1. The code begins by importing functions from ./modules/data.js and ./modules/list.js.
The “./” at the beginning of the path is required, indicating that this is a relative path.

2. The two imports are slightly different from each other:

A. The first imports three specific named functions. This is done by listing the functions
within curly braces.

LESSON 1: Advanced JavaScript Concepts | 29

EVALUATION COPY: Not to be used in class.

B. The second import doesn’t use curly braces. This indicates that it is importing the
default function exported by ./modules/list.js.

We will look at both of these modules in a moment.

3. The rest of the code in this file uses the functions that were imported to create an HTML list
and inject that list into the “my-data” div.

The resulting page, which uses some styles from styles.css, will look like this:

Local Development Server

When using modules, your HTML page must be delivered from a server. You can configure the
Visual Studio Code Open in Browser1 extension to deliver pages from a local development server:

1. In Visual Studio Code, select File > Preferences > Settings.

2. Search Settings for “Open in Default Browser”.

3. Check the Open with local http server checkbox.

4. Then you can right-click your HTML page and select Open in Default Browser to
open a web page in the browser. The URL will begin with something like
“http://localhost:52330”.

Review the two files being imported.

1. https://marketplace.visualstudio.com/items?itemName=peakchen90.open-html-in-browser

30 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

https://marketplace.visualstudio.com/items?itemName=peakchen90.open-html-in-browser
https://marketplace.visualstudio.com/items?itemName=peakchen90.open-html-in-browser

Demo 1.22: AdvancedJSConcepts/Demos/dataview/modules/data.js

function init() {1.
return {}2.

}3.
4.

function addItem(dict, key, value) {5.
dict[key] = value;6.

}7.
8.

function removeItem(dict, key) {9.
delete dict[key];10.

}11.
12.

export {init, addItem, removeItem};13.

Code Explanation

This is the data module. It has a few simple functions for creating an object and adding and removing
items from it.

The interesting piece is the last line, which exports these three functions, thereby making it possible
for other modules to import them as main.js does.

Demo 1.23: AdvancedJSConcepts/Demos/dataview/modules/list.js

export default function create(data, target, title) {1.
const list = document.createElement('ol');2.

3.
for (let key in data) {4.
const item = document.createElement('li');5.
const value = data[key];6.
item.innerHTML = `${key} - ${value}.`;7.
list.appendChild(item);8.

}9.
10.

const header = document.createElement('h3');11.
header.innerHTML = title;12.

13.
document.getElementById(target).appendChild(header);14.
document.getElementById(target).appendChild(list);15.

}16.

LESSON 1: Advanced JavaScript Concepts | 31

EVALUATION COPY: Not to be used in class.

Code Explanation

This is the list module. Its create() function uses the passed-in data object to create the HTML
list and inject it into the element with the id equal to the passed-in target.

The most interesting piece of this file is the export default at the beginning of the first line. This
indicates that this function will be exported automatically when the list.js module is imported.
Typically, the importing file will use the same name for that function, but it doesn’t have to, and, as
you’ll soon see, there are cases when it cannot.

 1.12.1. Try This

1. Open AdvancedJSConcepts/Demos/dataview/index.html in your browser.

2. Open AdvancedJSConcepts/Demos/dataview/main.js in your editor.

3. Change the second import statement to import from table.js instead of list.js:

import create from './modules/table.js';

4. Refresh the browser page. Notice it now shows a table:

5. Open AdvancedJSConcepts/Demos/dataview/modules/table.js in your editor and
examine the code. Like list.js, it exports a create() function by default. That function
uses the passed-in data object to create the HTML table and inject it into the element with
the id equal to the passed-in target.

Here is the file:

32 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

Demo 1.24: AdvancedJSConcepts/Demos/dataview/modules/table.js

export default function create(data, target, title) {1.
const table = document.createElement('table');2.

3.
const caption = document.createElement('caption');4.
caption.innerHTML = title;5.
table.appendChild(caption);6.

7.
const tbody = document.createElement('tbody');8.
table.appendChild(tbody);9.

10.
for (let key in data) {11.
const row = document.createElement('tr');12.
const th = document.createElement('th');13.
const td = document.createElement('td');14.
const value = data[key];15.
th.innerHTML = key;16.
td.innerHTML = value;17.
row.appendChild(th);18.
row.appendChild(td);19.
tbody.appendChild(row);20.

}21.
22.

document.getElementById(target).appendChild(table);23.
}24.

Now, think about this: what would happen if we wanted to include both the table and the list in the
target div? Both modules export a default function named create(), but we cannot call them both
create() in main.js. Because the two modules use default export, the function is imported as
an unnamed function. In the importing file, we can call it whatever we want, so to avoid a conflict, we
can do this:

import createList from './modules/list.js';
import createTable from './modules/table.js';

Then, we can inject the list and table into the div like this:

createList(data, 'my-data', 'State Abbreviations');
createTable(data, 'my-data', 'State Abbreviations');

Give it a try. When you’re done, the page should look like this:

LESSON 1: Advanced JavaScript Concepts | 33

EVALUATION COPY: Not to be used in class.

Note it is also possible to get conflicts when importing named functions. You can avoid that by using
the as keyword and an alias:

import {init as initData} from './modules/data.js';

EVALUATION COPY: Not to be used in class.

❋

1.13. npm

Node.js is free and thousands of Node programs (called packages) have been written by JavaScript
developers. Because so many packages exist, it is necessary to manage them. Enter package managers. A
package manager is software that simplifies the process of installing, uninstalling, and updating packages.
When you install Node, it automatically installs a Node package manager named npm. The result is
that JavaScript programmers today have a vast library of free tools, which can be found easily at
https://www.npmjs.com and quickly installed with npm. Let’s look at a simple one.

 1.13.1. A Little Riddle

The following items can pass through the green glass door:

34 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

https://www.npmjs.com

1. puddles

2. mommies

3. aardvarks

4. balloons

The following items cannot pass through the green glass door:

1. ponds

2. moms

3. anteaters

4. kites

Knowing that, which of the following can pass through the green glass door?

1. bananas

2. apples

3. pears

4. grapes

5. cherries

Did you figure it out? The two that can pass are apples and cherries. Any word with a double letter
can pass through the green glass door.

Here is a function for checking whether a word can pass through the green glass door:

function greenGlassDoor(word) {
let letter = '';
for (let i = 0; i < word.length; i++) {
const newLetter = word.charAt(i).toLowerCase();
if (newLetter === letter) {
return i;

}
letter = newLetter;

}
return 0;

}

Imagine you want to test that function by passing a bunch of randomly generated strings. You could
write your own function for creating a random string, but you don’t have to…

LESSON 1: Advanced JavaScript Concepts | 35

EVALUATION COPY: Not to be used in class.

The randomstring Package

As its name implies, the randomstring package creates random strings. Visit
https://www.npmjs.com/package/randomstring and briefly review the Usage documentation.

Now review the following demo:

Demo 1.25: AdvancedJSConcepts/Demos/random-string.js

// First run npm install randomstring1.
// Documentation at https://www.npmjs.com/package/randomstring2.

3.
var randomstring = require('randomstring');4.

5.
const a = randomstring.generate();6.
console.log(a);7.

8.
const b = randomstring.generate(7);9.
console.log(b);10.

11.
const c = randomstring.generate({12.
length: 12,13.
charset: 'alphabetic'14.

});15.
console.log(c);16.

17.
const d = randomstring.generate({18.
charset: 'abc'19.

});20.
console.log(d);21.

Code Explanation

This creates random strings by passing different parameters to randomstring.generate(). It then
outputs the created strings to the console.

1. Open AdvancedJSConcepts/Demos in the terminal.

2. Run random-string.js with Node (node random-string.js). You will get an error like
this one:

Error: Cannot find module 'randomstring'

That’s because you haven’t installed the package yet.

36 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

https://www.npmjs.com/package/randomstring

3. Now, install randomstring:

npm install randomstring

4. Run random-string.js with Node again. This time you should get output similar to the
following, though your random strings will be different:

PS …\AdvancedJSConcepts\Demos> node random-string.js
mqr5iEYYI8wUolkTYuqN8U2rSXOHVM4l
dDCahlC
pRdXngoDHANd
baaabcaabaccaaccabaaabbccacacaba

Now that we can easily create random strings, we can use this to test our greenGlassDoor() function:

LESSON 1: Advanced JavaScript Concepts | 37

EVALUATION COPY: Not to be used in class.

Demo 1.26: AdvancedJSConcepts/Demos/test-green-glass-door.js

function greenGlassDoor(word) {1.
let letter = '';2.
for (let i = 0; i < word.length; i++) {3.
const newLetter = word.charAt(i).toLowerCase();4.
if (newLetter === letter) {5.
return i;6.

}7.
letter = newLetter;8.

}9.
return 0;10.

}11.
12.

const randomstring = require('randomstring');13.
const testWords = [];14.
for (let i=0; i<10; i++) {15.
const word = randomstring.generate({16.
length: 10,17.
charset: 'alphabetic'18.

});19.
testWords.push(word);20.

}21.
22.

for (let w of testWords) {23.
const i = greenGlassDoor(w);24.
if (i) {25.
console.log(`${w} passes: ${w[i-1]}${w[i]} at position ${i}.`);26.

} else {27.
console.log(`${w} cannot pass.`);28.

}29.
}30.

Code Explanation

Notice that we include randomstring using Node’s require() function, which is similar to import,
but can be done outside of a module:

const randomstring = require('randomstring');

Run the file with Node. You will get output similar to the following:

38 | LESSON 1: Advanced JavaScript Concepts

EVALUATION COPY: Not to be used in class.

PS …\AdvancedJSConcepts\Demos> node test-green-glass-door.js
EMVKPuBXzs cannot pass.
vKdLQckMxM cannot pass.
vBOHsFGSzs cannot pass.
qVVsaGiRlb can pass: VV at position 2.
ZddOSJCywr can pass: dd at position 2.
DjahnFqxnf cannot pass.
aPcqysTiuK cannot pass.
bPsZQvJrRX can pass: rR at position 8.
qiCWIlGZjd cannot pass.
vYGDwKyXJi cannot pass.

Conclusion

In this lesson, you have learned about some of the more advanced features of JavaScript. You should
now be ready to learn a JavaScript framework.

LESSON 1: Advanced JavaScript Concepts | 39

EVALUATION COPY: Not to be used in class.

	Advanced JavaScript Concepts
	Node.js
	Scope, var, let, and const
	Arrow Functions
	Rest Parameters
	Spread Operator
	Array Destructuring
	Template Literals
	Objects
	The this Object
	Array map() Method
	Array filter() Method
	Array find() Method
	JavaScript Modules
	npm

