
Introduction to
JavaScript Training

with examples and
hands-on exercises

WEBUCATOR

Copyright © 2023 by Webucator. All rights reserved.

No part of this manual may be reproduced or used in any manner without written permission of the
copyright owner.

Version: 3.3.0

The Authors

Nat Dunn

Nat Dunn is the founder of Webucator (www.webucator.com), a company that has provided training
for tens of thousands of students from thousands of organizations. Nat started the company in 2003
to combine his passion for technical training with his business expertise, and to help companies benefit
from both. His previous experience was in sales, business and technical training, and management. Nat
has an MBA from Harvard Business School and a BA in International Relations from Pomona College.

Follow Nat on Twitter at @natdunn and Webucator at @webucator.

Brian Hoke

Brian Hoke joined Webucator as CEO in January, 2022. Brian Hoke was formerly Principal of Bentley
Hoke, a web consultancy formed in Syracuse, New York, in 2000. The firm served the professional
services, education, government, nonprofit, and retail sectors with a variety of development, design,
and marketing services. Previously, Brian served as Director of Technology, Chair of the Computer
and Information Science Department, and Dean of Students at Manlius Pebble Hill School, an
independent day school in DeWitt, NY. Before that, Brian taught at Insitut auf dem Rosenberg, an
international boarding school in St. Gallen, Switzerland. Brian holds degrees from Hamilton and
Dartmouth colleges.

Class Files

Download the class files used in this manual at
https://static.webucator.com/media/public/materials/classfiles/JSC101-3.3.0-introduction-to-javascript-training.zip.

Errata

Corrections to errors in the manual can be found at https://www.webucator.com/books/errata/.

https://static.webucator.com/media/public/materials/classfiles/JSC101-3.3.0-introduction-to-javascript-training.zip
https://www.webucator.com/books/errata/

Table of Contents

LESSON 1. JavaScript Basics..1
JavaScript vs. EcmaScript..1
The HTML DOM..2
JavaScript Syntax..3
Accessing Elements..4
Where Is JavaScript Code Written?..5
JavaScript Objects, Methods and Properties..8

Exercise 1: Alerts, Writing, and Changing Background Color..11
LESSON 2. Variables, Arrays, and Operators...15

JavaScript Variables..15
A Loosely Typed Language..16
Google Chrome DevTools...17
Storing User-Entered Data..21

Exercise 2: Using Variables..25
Constants..26
Arrays..27

Exercise 3: Working with Arrays..31
Associative Arrays...34
Playing with Array Methods...37
JavaScript Operators...38
The Modulus Operator...41
Playing with Operators...41
The Default Operator..44

Exercise 4: Working with Operators...47
LESSON 3. JavaScript Functions..55

Global Objects and Functions...55
Exercise 5: Working with Global Functions..58

User-defined Functions..64
Exercise 6: Writing a JavaScript Function...68

Returning Values from Functions...74
LESSON 4. Built-In JavaScript Objects..75

String..75
Math...80
Date..83
Helper Functions..88

Exercise 7: Returning the Day of the Week as a String...89

Table of Contents | i

LESSON 5. Conditionals and Loops..93
Conditionals..93
Short-circuiting ..98
Switch / Case..102
Ternary Operator..108
Truthy and Falsy..109

Exercise 8: Conditional Processing...110
Loops..114
while and do…while Loops...114
for Loops...116
break and continue...118

Exercise 9: Working with Loops...120
Array: forEach()...123

LESSON 6. Event Handlers and Listeners..125
On-event Handlers...125

Exercise 10: Using On-event Handlers..128
The addEventListener() Method...132
Anonymous Functions..138
Capturing Key Events..140

Exercise 11: Adding Event Listeners...142
Benefits of Event Listeners...145
Timers...147

Exercise 12: Typing Test...151

ii | Table of Contents

LESSON 7. The HTML Document Object Model..157
CSS Selectors..158
The innerHTML Property..162
Nodes, NodeLists, and HTMLCollections..163
Accessing Element Nodes...164

Exercise 13: Accessing Elements..174
Dot Notation and Square Bracket Notation..176
Accessing Elements Hierarchically..180

Exercise 14: Working with Hierarchical Elements...184
Accessing Attributes...189
Creating New Nodes...190
Focusing on a Field...191
Shopping List Application...192

Exercise 15: Logging..194
Exercise 16: Adding EventListeners..197
Exercise 17: Adding Items to the List..201
Exercise 18: Dynamically Adding Remove Buttons to the List Items...........................203
Exercise 19: Removing List Items...205
Exercise 20: Preventing Duplicates and Zero-length Product Names..........................207

Manipulating Tables...209
LESSON 8. CSS Object Model..217

Changing CSS with JavaScript...217
Hiding and Showing Elements..222
Checking and Changing Other Style Properties..226
Increasing and Decreasing Measurements...228
Custom data Attributes..232
Gotcha with fontWeight...237
Font Awesome..240
classList Property..242

Exercise 21: Showing and Hiding Elements..243
LESSON 9. Errors and Exceptions..251

Runtime Errors...251
Globally Handled Errors..252
Structured Error Handling..253

Exercise 22: Try/Catch...257

Table of Contents | iii

LESSON 1
JavaScript Basics

EVALUATION COPY: Not to be used in class.

Topics Covered

 The HTML DOM.

 JavaScript syntax rules.

 Inline JavaScript.

 JavaScript script blocks.

 Creating and linking to external JavaScript files.

 Working with JavaScript objects, methods, and properties.

 Referencing HTML elements.

Introduction

In this lesson, you will get comfortable with the basics of JavaScript.

EVALUATION COPY: Not to be used in class.

❋

1.1. JavaScript vs. EcmaScript

We refer to the language you are learning as JavaScript, which is what it is usually called. However,
JavaScript was invented by Netscape Communications and is now owned by Oracle Corporation1.
Microsoft calls its version of the language JScript. JavaScript and JScript are both implementations of
EcmaScript, but everyone still refers to the language as JavaScript.

1. https://en.wikipedia.org/wiki/JavaScript#Trademark

LESSON 1: JavaScript Basics | 1

EVALUATION COPY: Not to be used in class.

https://en.wikipedia.org/wiki/JavaScript#Trademark
https://en.wikipedia.org/wiki/JavaScript#Trademark

 1.1.1. What is ECMAScript?

ECMAScript, sometimes abbreviated as “ES”, is a scripting language specification maintained and
trademarked by Ecma International (https://www.ecma-international.org/mission/), a
Europe-based industry association dedicated to technology and communications standards. The
specification for the most-recent standard version of ECMAScript can be found at:

https://www.ecma-international.org/publications-and-standards/standards/ecma-
262/

As we mentioned above, JavaScript – the scripting language you are learning here and whose code is
run by the browsers you (or others) use to visit the pages you build – is an implementation of
ECMAScript.

Keep in mind that ECMAScript evolves over time: new features are added, new syntax is adopted, etc.
Like CSS, HTML, and other client-side technologies, JavaScript is an implementation of a standard
(ECMAScript) by browsers - please be aware that all browsers won’t implement (or implement in the
same manner) all newer features of ECMAScript, and that later versions of browsers will implement
newer features over time.

EVALUATION COPY: Not to be used in class.

❋

1.2. The HTML DOM

The HTML Document Object Model (DOM) is the browser’s view of an HTML page as an object
hierarchy, starting with the browser window itself and moving deeper into the page, including all of
the elements on the page and their attributes. Below is a simplified version of the HTML DOM:

2 | LESSON 1: JavaScript Basics

EVALUATION COPY: Not to be used in class.

https://www.ecma-international.org/mission/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/

As shown, the top-level object is window. The document object is a child of window and all the objects
(i.e., elements) that appear on the page (e.g., forms, links, images, tables, etc.) are descendants of the
document object. These objects can have children of their own. For example, form objects generally
have several child objects, including text boxes, radio buttons, and select menus.

EVALUATION COPY: Not to be used in class.

❋

1.3. JavaScript Syntax

 1.3.1. Basic Rules

1. JavaScript statements end with semi-colons.

2. JavaScript is case sensitive.

3. JavaScript has two forms of comments:

LESSON 1: JavaScript Basics | 3

EVALUATION COPY: Not to be used in class.

Single-line comments begin with a double slash (//).

Multi-line comments begin with “/*” and end with “*/”.

// This is a single-line comment.

/*
This is
a multi-line
comment.

*/

EVALUATION COPY: Not to be used in class.

❋

1.4. Accessing Elements

 1.4.1. Dot Notation

In JavaScript, elements (and other objects) can be referenced using dot notation, starting with the
highest-level object (i.e., window). Objects can be referred to by name or id or by their position on the
page. For example, if there is a form on the page named “loginform”, using dot notation you could
refer to the form as follows:

window.document.loginform

Assuming that loginform is the first form on the page, you could also refer to it in this way:

window.document.forms[0]

A document can have multiple form elements as children. The number in the square brackets ([])
indicates the specific form in question. In programming speak, every document object contains a
collection of forms. The length of the collection could be zero (meaning there are no forms on the page)
or greater. In JavaScript, collections (and arrays) are zero-based, meaning that the first form on the
page is referenced with the number zero (0) as shown in the syntax example above.

4 | LESSON 1: JavaScript Basics

EVALUATION COPY: Not to be used in class.

 1.4.2. Square Bracket Notation

Objects can also be referenced using square bracket notation as shown below:

window['document']['loginform']

// and

window['document']['forms'][0]

Dot notation and square bracket notation are completely interchangeable. Dot notation is much more
common; however, as we will see later in the course, there are times when it is more convenient to use
square bracket notation.

EVALUATION COPY: Not to be used in class.

❋

1.5. Where Is JavaScript Code Written?

JavaScript code can be written inline (e.g., within HTML attributes called on-event handlers), in script
blocks, and in external JavaScript files. The page below shows examples of all three.

LESSON 1: JavaScript Basics | 5

EVALUATION COPY: Not to be used in class.

Demo 1.1: JavaScriptBasics/Demos/javascript.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
//Pop up an alert9.
window.alert("The page is loading");10.

</script>11.
<title>JavaScript Page</title>12.
</head>13.
<body>14.
<main>15.
<button onclick="document.body.style.backgroundColor = 'red';">16.
Red17.

</button>18.
<button onclick="document.body.style.backgroundColor = 'white';">19.
White20.

</button>21.
<button onclick="document.body.style.backgroundColor = 'green';">22.
Green23.

</button>24.
<button onclick="document.body.style.backgroundColor = 'blue';">25.
Blue26.

</button>27.
<script src="script.js"></script>28.

</main>29.
</body>30.
</html>31.

Demo 1.2: JavaScriptBasics/Demos/script.js

/*1.
This script simply outputs2.
"Hello, there!"3.

to the browser.4.
*/5.
document.write("<p>Hello, there!</p>");6.

1. Open JavaScriptBasics/Demos/javascript.html in your browser. As the page loads,
an alert will pop up that says “The page is loading” as shown below:

6 | LESSON 1: JavaScript Basics

EVALUATION COPY: Not to be used in class.

2. Click the OK button. The page will finish loading and will appear as follows:

The text “Hello, there!” is written dynamically by the code in JavaScriptBasics/De
mos/script.js.

3. Click any one of the buttons. The background color of the page changes:

LESSON 1: JavaScript Basics | 7

EVALUATION COPY: Not to be used in class.

We will look at the code in this file and in JavaScriptBasics/Demos/javascript.html again
shortly.

The Implicit window Object

The window object is always the implicit top-level object and therefore does not have to be
included in references to objects. For example, window.document.write() can be shortened
to document.write(). Likewise, window.alert() can be shortened to just alert().

EVALUATION COPY: Not to be used in class.

❋

1.6. JavaScript Objects, Methods and Properties

JavaScript is used to manipulate or get information about objects in the HTML DOM. Objects in an
HTML page have methods (actions, such as opening a new window or submitting a form) and properties
(attributes or qualities, such as color and size).

8 | LESSON 1: JavaScript Basics

EVALUATION COPY: Not to be used in class.

To illustrate objects, methods and properties, let’s return to the code in JavaScriptBasics/De
mos/javascript.html and JavaScriptBasics/Demos/script.js. You may find it useful to have
those files open in your editor while reading this section.

 1.6.1. Methods

Methods are the verbs of JavaScript. They cause things to happen.

window.alert()

HTML pages are read and processed from top to bottom. The JavaScript code in the initial script
block at the top of JavaScriptBasics/Demos/javascript.html calls the alert() method of the
window object. When the browser reads that line of code, it will pop up an alert box and will not
continue processing the page until the user presses the OK button. Once the user presses the button,
the alert box disappears and the rest of the page loads.

Note that, because window is the implicit top-level object, we could leave it off and just write
alert("The page is loading"). And, in fact, this is the way it is usually done.

document.write()

The write() method of the document object is used to write out code to the page as it loads. In
JavaScriptBasics/Demos/script.js, it simply writes out “Hello, there!”; however, it is more often
used to write out dynamic data, such as the date and time on the user’s machine.

The document object is a child of window, so we could write window.document.write('some
text'), but again, window is implicit.

Arguments

Methods can take zero or more arguments separated by commas.

object.method(argument1, argument2);

The alert() and write() methods shown in the example above each take only one argument: the
message to show or the HTML to write out to the browser.

LESSON 1: JavaScript Basics | 9

EVALUATION COPY: Not to be used in class.

 1.6.2. Properties

Properties are the adjectives of JavaScript. They describe qualities of objects and, in some cases are
writable (can be changed dynamically).

document.body.style.backgroundColor

The body object is a property of the document object, the style object is a property of the body
object, and backgroundColor is a read-write property of the style object. To understand what’s
going on, it can be useful to read the dot notation from right to left: “The backgroundColor style
of the body of the document.”

Looking back at JavaScriptBasics/Demos/javascript.html, the four button elements use the
onclick on-event handler to catch click events. When the user clicks a button, JavaScript is used to
set the background of the body to a new color, in the same way that we might use CSS to style the
page with background-color:red or background-color:white.

10 | LESSON 1: JavaScript Basics

EVALUATION COPY: Not to be used in class.

 Exercise 1: Alerts, Writing, and Changing
Background Color

 5 to 15 minutes

In this exercise, you will practice using JavaScript to pop up an alert, write text to the screen, and set
the background color of the page.

1. Open JavaScriptBasics/Exercises/alert-write-bgcolor.html for editing.

2. In the head of the file, add a JavaScript alert which pops up the message “Welcome to my
page!” when the page loads.

3. Add click handlers to the two buttons to allow the user to change the background color of
the page to red or to blue.

4. In the script at the bottom of the page, use JavaScript to write the text “This text was
generated by JavaScript.” to the page.

5. Test your solution in a browser.

LESSON 1: JavaScript Basics | 11

EVALUATION COPY: Not to be used in class.

Solution: JavaScriptBasics/Solutions/alert-write-bgcolor.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
window.alert("Welcome to my page!");9.

</script>10.
<title>Alert, Write, Change Background Color</title>11.
</head>12.
<body>13.
<main>14.
<p>Click the button to turn the page:</p>15.
<button onclick="document.body.style.backgroundColor = 'red'">16.
Red17.

</button>18.
<p>Click the button to turn the page:</p>19.
<button onclick="document.body.style.backgroundColor = 'blue'">20.
Blue21.

</button>22.
<script>23.
document.write('This text was generated by JavaScript');24.

</script>25.
</main>26.
</body>27.
</html>28.

Code Explanation

1. In the head, we use window.alert() to generate the pop-up. We could have just used
alert().

2. We use document.write() to write to the screen at the bottom of the page.

3. We use onclick="document.body.style.backgroundColor = 'red'" and
onclick="document.body.style.backgroundColor = 'blue'" to add click handlers
to the buttons.

12 | LESSON 1: JavaScript Basics

EVALUATION COPY: Not to be used in class.

Conclusion

In this lesson, you have learned the basics of JavaScript. Now you’re ready for more.

LESSON 1: JavaScript Basics | 13

EVALUATION COPY: Not to be used in class.

14 | LESSON 1: JavaScript Basics

EVALUATION COPY: Not to be used in class.

LESSON 2
Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

Topics Covered

 Creating, reading, and modifying variables in JavaScript.

 JavaScript arrays.

 JavaScript operators.

Introduction

In this lesson, you will learn to work with variables, arrays, and operators.

EVALUATION COPY: Not to be used in class.

❋

2.1. JavaScript Variables

Variables are used to hold data in memory. JavaScript variables are declared with the let keyword.

let age;

While this practice is discouraged, it is possible to declare multiple variables in a single step, like this:

let age, height, weight, dominantHand;

After a variable is declared, it can be assigned a value.

LESSON 2: Variables, Arrays, and Operators | 15

EVALUATION COPY: Not to be used in class.

age = 18;

Variable declaration and assignment can be done in a single step.

let age = 18;

let versus var

If you have worked with JavaScript before, you may wonder why we are using let as opposed
to the var keyword. Although var has not been officially deprecated, use of this keyword is
discouraged primarily because variables defined with let cannot be accessed outside of the block
where the variable is defined, thus reducing the likelihood of runtime errors caused by changing
the value of a variable out of scope.2 See the Mozilla documentation3 for details.

EVALUATION COPY: Not to be used in class.

❋

2.2. A Loosely Typed Language

JavaScript is a loosely typed language. This means that you do not specify the data type of a variable
when declaring it. It also means that a single variable can hold different data types at different times
and that JavaScript can change the variable type on the fly.

For example, in the following block, the variable age is an integer and the variable strAge is a string
(programming speak for text) because of the quotes.

let age = 18;
let strAge = "18";

If you were to try to do a math function on strAge (e.g., multiply it by 4), a strongly typed (or statically
typed) language would error saying you cannot multiply a string by a number. JavaScript would

2. You will learn more about scope when we cover functions.
3. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let

16 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let

dynamically change strAge to an integer for the purposes of that operation. Although this is very
convenient, it can also cause unexpected results, so be careful.

TypeScript

TypeScript4 is an open-source programming language developed by Microsoft. Developers writing
in TypeScript compile their code to valid JavaScript, which they can use anywhere one might
use JavaScript. A useful feature of TypeScript is static typing, meaning that a developer might
specify the type of a given variable - to be a string, say, or a Boolean true/false variable - when
declaring the variable. Violations of this static typing - trying to work with a number value as if
it were a string value, for example - produces an error when compiling the TypeScript code into
JavaScript, and thus adds a check against a dangerous bug creeping into the code.

EVALUATION COPY: Not to be used in class.

❋

2.3. Google Chrome DevTools

Google Chrome DevTools is a set of tools to help web developers. We will use the Chrome DevTools
Console to illustrate JavaScript’s dynamic typing.

To open the Chrome DevTools Console:

1. Click the three-vertical-dot icon in the upper right of Google Chrome.

2. Select More Tools.

3. Select Developer Tools.

4. https://www.typescriptlang.org/

LESSON 2: Variables, Arrays, and Operators | 17

EVALUATION COPY: Not to be used in class.

https://www.typescriptlang.org/
https://www.typescriptlang.org/

4. The tools will usually be docked on the right or bottom of your screen. Make sure that the
Console is selected:

You may need to dropdown the menu to see the Console option:

5. Now type “gobbledygook” in the Console and press Enter:

18 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

The word “gobbledygook” doesn’t mean anything in JavaScript and we have not defined a
variable named “gobbledygook”, so we get an error.

6. To clear the Console, press the Clear Console icon:

7. You should now have a clear Console to start practicing JavaScript:

You can write and test JavaScript for a page directly in the Console. We will use it to show how JavaScript
variables are dynamic:

1. Type let age = 18; and press Enter :

LESSON 2: Variables, Arrays, and Operators | 19

EVALUATION COPY: Not to be used in class.

Don’t worry about the “undefined” response. All that means is that your code didn’t return
anything.

2. Now type age; and press Enter :

This time it does return something – the value of age.

3. Let’s subtract 2 from age and then add 2 to age :

That works as expected.

4. Now we will set age to '18' in single quotes. This makes age a string, which is
programming-speak for text :

Notice that it returns "18". At this point, a strongly typed programming language would
have balked. It would have told us that age was declared as a number and cannot be assigned
a string value. You may also notice that "18" in double quotes was returned even though we
used single quotes when we set the value of age. Single and double quotes are interchangeable
in JavaScript.

5. Now let’s subtract 2 from age :

20 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

Notice that JavaScript understands that we want to treat age as a number and so it converts
it to a number before doing the math.

6. Now let’s add 2 to age :

Oops! What happened? As it turns out, the plus operator (+) has multiple functions in
JavaScript. In addition to adding numbers together, it can add strings together. In this case,
because age is a string, it converts 2 to a string before doing the operation. So, it’s adding
"18" and "2" to give us "182".

The issue shown above does not come up often, but when it does, it can bite you. The best way to
handle it is to make sure that when you are going to use a variable as a new type, you explicitly convert
it to the new type. We will show how to do that later in the course.

 2.3.1. Variable Naming

1. Variable names must begin with a letter, underscore (_), or dollar sign ($).

2. Variable names cannot contain spaces or special characters (other than the underscore and
dollar sign).

3. Variable names can contain numbers (but not as the first character).

4. Variable names are case sensitive.

5. You cannot use keywords (e.g., window or function) as variable names.

EVALUATION COPY: Not to be used in class.

❋

2.4. Storing User-Entered Data

The following example uses the prompt() method of the window object to collect user input. The
value entered by the user is then assigned to a variable, which is accessed when the user clicks one of
the button elements.

LESSON 2: Variables, Arrays, and Operators | 21

EVALUATION COPY: Not to be used in class.

Demo 2.1: VariablesArraysOperators/Demos/variables.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
//Pop up a prompt9.
let userColor = window.prompt("Enter a color.", "");10.

</script>11.
<title>JavaScript Variables</title>12.
</head>13.
<body>14.
<main>15.
<button onclick="document.body.style.backgroundColor = 'red';">16.
Red17.

</button>18.
<button onclick="document.body.style.backgroundColor = 'white';">19.
White20.

</button>21.
<button onclick="document.body.style.backgroundColor = 'green';">22.
Green23.

</button>24.
<button onclick="document.body.style.backgroundColor = 'blue';">25.
Blue26.

</button>27.
<button onclick="document.body.style.backgroundColor = userColor;">28.
<script>29.
document.write(userColor);30.

</script>31.
</button>32.

</main>33.
</body>34.
</html>35.

As the page loads, a prompt pops up asking the user to enter a color.

22 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

This is done with the prompt() method of the window object. The prompt() method is used to get
input from the user. It takes two arguments:

1. The message in the dialog box (e.g., "Enter a color.").

2. The default value that appears in the text box. In the example above this is an empty string
(i.e., "").

If the OK button is pressed, the prompt returns the value entered in the text box. If the Cancel button,
the prompt returns null.5 The line below assigns whatever is returned to the variable userColor.

let userColor = window.prompt("Enter a color.", "");

A script block with a call to document.write() is then used to output the color entered by the
user. This output is contained within a button element, which has an onclick on-event handler that
will be used to turn the background color of the page to the user-entered color.

<button
onclick="document.body.style.backgroundColor = userColor;">

<script>
document.write(userColor);

</script>
</button>

Test this out:

1. Open VariablesArraysOperators/Demos/variables.html in your browser and enter
“Yellow” in the prompt:

5. In JavaScript, null is a datatype with only one value: null. It represents a value that we don’t know or that is missing.

LESSON 2: Variables, Arrays, and Operators | 23

EVALUATION COPY: Not to be used in class.

2. The resulting page should appear as follows:

3. Click the “Yellow” button. The background should turn yellow.

24 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

 Exercise 2: Using Variables
 5 to 15 minutes

In this exercise, you will practice using variables.

1. Open VariablesArraysOperators/Exercises/variables.html for editing.

2. Below the ADD PROMPT HERE comment, write code that will prompt the user for their first
name and assign the result to a variable.

3. Add a button below the Ringo button that reads “Your Name”. Add functionality so that
when this button is pressed an alert pops up showing the user’s first name.

4. Test your solution in a browser.

Exercise Code 2.1: VariablesArraysOperators/Exercises/variables.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
//ADD PROMPT HERE9.

</script>10.
<title>JavaScript Variables</title>11.
</head>12.
<body>13.
<main>14.
<button onclick="alert('Paul');">Paul</button>15.
<button onclick="alert('John');">John</button>16.
<button onclick="alert('George');">George</button>17.
<button onclick="alert('Ringo');">Ringo</button>18.
<!--ADD BUTTON HERE-->19.

</main>20.
</body>21.
</html>22.

LESSON 2: Variables, Arrays, and Operators | 25

EVALUATION COPY: Not to be used in class.

Solution: VariablesArraysOperators/Solutions/variables.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
let firstName = window.prompt("What's your name?", "");9.

</script>10.
<title>JavaScript Variables</title>11.
</head>12.
<body>13.
<main>14.
<button onclick="alert('Paul');">Paul</button>15.
<button onclick="alert('John');">John</button>16.
<button onclick="alert('George');">George</button>17.
<button onclick="alert('Ringo');">Ringo</button>18.
<button onclick="alert(firstName);">Your Name</button>19.

</main>20.
</body>21.
</html>22.

EVALUATION COPY: Not to be used in class.

❋

2.5. Constants

In programming, a constant is like a variable in that it is an identifier that holds a value, but, unlike
variables, constants are not variable, they are constant. Good name choices, right?

Whereas variables are declared with the let keyword, constants are declared with the const keyword:

const NUM = 1;

Constants cannot be reassigned; that is, a later statement like NUM = 2; would fail, meaning that the
value of NUM would remain 1; depending on how the browser you are using handles const, the later

26 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

statement may either cause the code to fail or simply not assign the new value to NUM. In Google
Chrome, for example, trying to assign a new value to a constant will cause an error. We can see this
using the Chrome DevTools Console:

While constants can be declared with uppercase or lowercase names, the convention is to use
all-uppercase names for constants in the global scope6, so they are easily distinguishable from variables.
Constants in the function scope are named using lowerCamelCase, just like variables.

Constants in this Course

In this course, we often write small bits of code in the global scope (i.e., not within curly braces)
that would normally be locally scoped in real code. In these cases, we use lowerCamelCase for
our constant names.

EVALUATION COPY: Not to be used in class.

❋

2.6. Arrays

An array is a grouping of objects that can be accessed through subscripts. At its simplest, an array can
be thought of as a list. In JavaScript, the first element of an array is considered to be at position zero
(0), the second element at position one (1), and so on. Arrays are useful for storing related sets of data.7

Arrays are declared using the new keyword and should be defined as constant:

const myArray = new Array();

6. You will learn more about scope when we cover functions.
7. Unlike in some languages, values in JavaScript arrays do not all have to be of the same data type.

LESSON 2: Variables, Arrays, and Operators | 27

EVALUATION COPY: Not to be used in class.

It is also possible and very common to use the [] literal to declare a new Array object:

const myArray = [];

When constants are not constant

When you declare a constant, you create a pointer to a specific object. You may not change the
pointer (i.e., you cannot assign a new value to a constant), but you can change the object that is
assigned to the constant (e.g., the items in the array).

Values are assigned to arrays as follows:

myArray[0] = value1;
myArray[1] = value2;
myArray[2] = value3;

Arrays can be declared with initial values.

const myArray = new Array(value1, value2, value3);

Or, using the [] notation:

const myArray = [value1, value2, value3];

The following example is similar to the previous one, except that it prompts the user for four different
colors and places each into the colors array. It then displays the values in the colors array in the
buttons and assigns them to document.body.style.backgroundColor when the user clicks the
buttons.

28 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

Demo 2.2: VariablesArraysOperators/Demos/arrays.html

-------Lines 1 through 7 Omitted-------
<script>8.
//Pop up four prompts and create an array9.
const colors = new Array();10.
colors[0] = prompt("Choose a color.", "");11.
colors[1] = prompt("Choose a color.", "");12.
colors[2] = prompt("Choose a color.", "");13.
colors[3] = prompt("Choose a color.", "");14.

</script>15.
<title>JavaScript Arrays</title>16.
</head>17.
<body>18.
<main>19.
<button onclick="document.body.style.backgroundColor = colors[0];">20.
<script>21.
document.write(colors[0]);22.

</script>23.
</button>24.
<button onclick="document.body.style.backgroundColor = colors[1];">25.
<script>26.
document.write(colors[1]);27.

</script>28.
</button>29.
<button onclick="document.body.style.backgroundColor = colors[2];">30.
<script>31.
document.write(colors[2]);32.

</script>33.
</button>34.
<button onclick="document.body.style.backgroundColor = colors[3];">35.
<script>36.
document.write(colors[3]);37.

</script>38.
</button>39.

</main>40.
</body>41.
</html>42.

As the page loads, an array called colors is declared.

colors = new Array();

The next four lines populate the array with user-entered values.

LESSON 2: Variables, Arrays, and Operators | 29

EVALUATION COPY: Not to be used in class.

colors[0] = prompt("Choose a color.", "");
colors[1] = prompt("Choose a color.", "");
colors[2] = prompt("Choose a color.", "");
colors[3] = prompt("Choose a color.", "");

The body of the page contains a paragraph with four <button> tags, the text of which is dynamically
created with values from the colors array.

30 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

 Exercise 3: Working with Arrays
 15 to 25 minutes

In this exercise, you will practice working with arrays.

1. Open VariablesArraysOperators/Exercises/arrays.html for editing.

2. Below the comment, declare a rockStars array and populate it with four values entered by
the user.

3. Add functionality to the buttons, so that alerts pop up with values from the array when the
buttons are clicked.

4. Test your solution in a browser. It should work as follows:

A. As the page loads, you should get four alerts (the values should be blank by default):

LESSON 2: Variables, Arrays, and Operators | 31

EVALUATION COPY: Not to be used in class.

B. After responding to all the prompts, you should see four buttons on the page. When
you click one of the buttons, it should alert one of your rock stars:

32 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

Exercise Code 3.1: VariablesArraysOperators/Exercises/arrays.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
/*9.
Declare a rockStars array and populate it with10.
four values entered by the user.11.

*/12.
</script>13.
<title>JavaScript Arrays</title>14.
</head>15.
<body>16.
<main>17.
<button>Favorite</button>18.
<button>Next Favorite</button>19.
<button>Next Favorite</button>20.
<button>Next Favorite</button>21.

</main>22.
</body>23.
</html>24.

LESSON 2: Variables, Arrays, and Operators | 33

EVALUATION COPY: Not to be used in class.

Solution: VariablesArraysOperators/Solutions/arrays.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
const rockStars = new Array();9.
rockStars[0] = prompt("Who is your favorite rock star?", "");10.
rockStars[1] = prompt("Your next favorite rock star?", "");11.
rockStars[2] = prompt("Your next favorite rock star?", "");12.
rockStars[3] = prompt("Your next favorite rock star?", "");13.

</script>14.
<title>JavaScript Arrays</title>15.
</head>16.
<body>17.
<main>18.
<button onclick="alert(rockStars[0]);">Favorite</button>19.
<button onclick="alert(rockStars[1]);">Next Favorite</button>20.
<button onclick="alert(rockStars[2]);">Next Favorite</button>21.
<button onclick="alert(rockStars[3]);">Next Favorite</button>22.

</main>23.
</body>24.
</html>25.

EVALUATION COPY: Not to be used in class.

❋

2.7. Associative Arrays

Whereas regular (or enumerated) arrays are indexed numerically, associative arrays are indexed using
names as keys. The advantage of this is that the keys can be meaningful, which can make it easier to
reference an element in an array. The following code, written in Chrome DevTools Console, illustrates
how an associative array is used:

34 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

Arrays can also have subarrays. For example, rather than having “singer1” and “singer2” keys, it would
be better to have a “singers” key that was an enumerated array. We could do that like this:

Notice how the singers are accessed first by the “singers” key of the beatles array and then by the
index:

beatles['singers'][0];

 2.7.1. Array Properties and Methods

The tables below show some of the most useful array properties and methods. All of the examples
assume an array called beatles that holds “Paul”, “John”, “George”, and “Ringo”.

LESSON 2: Variables, Arrays, and Operators | 35

EVALUATION COPY: Not to be used in class.

const beatles = ["Paul", "John", "George", "Ringo"];

Array Properties
DescriptionProperty

Holds the number of elements in an array.length

beatles.length // 4

Array Methods
DescriptionProperty

Returns a string comprised of the elements in the array. The elements are joined together
by the delimiter. The default delimiter is a comma.

join(delimiter)

beatles.join(":") // Paul:John:George:Ringo
beatles.join() // Paul,John,George,Ringo

Appends an element to an array.push()

beatles.push("Steve")

Removes the last item in an array and returns its value.pop()

beatles.pop() // Returns Ringo

Removes the first item in an array and returns its value.shift()

beatles.shift() // Returns Paul

Prepends one or more items to the beginning of an array.unshift()

beatles.unshift('Paul')

Returns a subarray from start up to, but not including end. If end is left out, it
includes the remainder of the array.

slice(start, end)

beatles.slice(1, 3) //Returns [John, George]

Removes count items from start in the array and returns the resulting array.splice(start,
count) beatles.splice(1, 2) //Returns [Paul, Ringo]

Sorts an array alphabetically.sort()

beatles.sort() //Returns [George, John, Paul, Ringo] and sorts the array

36 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

EVALUATION COPY: Not to be used in class.

❋

2.8. Playing with Array Methods

Take some time to play around with these array methods in Chrome DevTools Console. Try your own
things and/or follow along with the following code.

Note that some methods will return a value without modifying the existing array, while others will
make changes to the existing array “in place”. For example, study the following code. Notice that
slice() returns a new array without changing the existing array, whereas splice() and sort() make
changes to the existing array.

LESSON 2: Variables, Arrays, and Operators | 37

EVALUATION COPY: Not to be used in class.

Array Documentation

See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Glob
al_Objects/Array for full documentation on Arrays.

EVALUATION COPY: Not to be used in class.

❋

2.9. JavaScript Operators

Arithmetic Operators
DescriptionOperator

Addition+

Subtraction-

Multiplication*

Division/

Modulus (remainder)%

38 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

Assignment Operators
DescriptionOperator

Assignment=

One step addition and assignment (a+=3 is the same as a=a+3)+=

One step subtraction and assignment (a-=3 is the same as a=a-3)-=

One step multiplication and assignment (a*=3 is the same as a=a*3)*=

One step division and assignment (a/=3 is the same as a=a/3)/=

One step modulus and assignment (a%=3 is the same as a=a%3)%=

Increment by one (a++ is the same as a=a+1 or a+=1)++

Decrement by one (a-- is the same as a=a-1 or a-=1)--

String Operators
DescriptionOperator

Concatenation+

let greeting = "Hello " + firstname;

One step concatenation and assignment+=

let greeting = "Hello ";
greeting += firstname;

The following code, written in Chrome DevTools Console, shows examples of working with JavaScript
arithmetic operators:

LESSON 2: Variables, Arrays, and Operators | 39

EVALUATION COPY: Not to be used in class.

And here we have examples of the concatenation operator:

40 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

EVALUATION COPY: Not to be used in class.

❋

2.10. The Modulus Operator

The modulus operator (%) is used to find the remainder after division:

5 % 2 // returns 1
11 % 3 // returns 2
22 % 4 // returns 2
22 % 3 // returns 1
10934 % 324 // returns 242

The modulus operator is useful for determining whether a number is even or odd:

1 % 2 // returns 1: odd
2 % 2 // returns 0: even
3 % 2 // returns 1: odd
4 % 2 // returns 0: even
5 % 2 // returns 1: odd
6 % 2 // returns 0: even

EVALUATION COPY: Not to be used in class.

❋

2.11. Playing with Operators

Take some time to play around with JavaScript operators in Chrome DevTools Console. Try your
own things and/or follow along with the code in the preceding sections.

The file below illustrates the use of the concatenation operator and several math operators. It also
illustrates a potential problem with loosely typed languages.

LESSON 2: Variables, Arrays, and Operators | 41

EVALUATION COPY: Not to be used in class.

Demo 2.3: VariablesArraysOperators/Demos/operators.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
const userNum1 = window.prompt("Choose a number.", "");9.
alert("You chose " + userNum1);10.
const userNum2 = window.prompt("Choose another number.", "");11.
alert("You chose " + userNum2);12.
const numsAdded = userNum1 + userNum2;13.
const numsSubtracted = userNum1 - userNum2;14.
const numsMultiplied = userNum1 * userNum2;15.
const numsDivided = userNum1 / userNum2;16.
const numsModulused = userNum1 % userNum2;17.

</script>18.
<title>JavaScript Operators</title>19.
</head>20.
<body>21.
<main>22.
<p>23.
<script>24.
document.write(userNum1 + " + " + userNum2 + " = ");25.
document.write(numsAdded + "
");26.
document.write(userNum1 + " - " + userNum2 + " = ");27.
document.write(numsSubtracted + "
");28.
document.write(userNum1 + " * " + userNum2 + " = ");29.
document.write(numsMultiplied + "
");30.
document.write(userNum1 + " / " + userNum2 + " = ");31.
document.write(numsDivided + "
");32.
document.write(userNum1 + " % " + userNum2 + " = ");33.
document.write(numsModulused + "
");34.

</script>35.
</p>36.

</main>37.
</body>38.
</html>39.

This page is processed as follows:

1. The user is prompted for a number and the result is assigned to userNum1:

42 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

2. An alert pops up telling the user what number they entered. The concatenation operator (+)
is used to combine two strings: “You chose ” and the number entered by the user. Note that
all user-entered data is always treated as a string of text, even if the text consists of only digits:

3. The user is prompted for another number and the result is assigned to userNum2:

4. Another alert pops up telling the user what number they entered:

LESSON 2: Variables, Arrays, and Operators | 43

EVALUATION COPY: Not to be used in class.

5. Five constants are declared and assigned values :

const numsAdded = userNum1 + userNum2;
const numsSubtracted = userNum1 - userNum2;
const numsMultiplied = userNum1 * userNum2;
const numsDivided = userNum1 / userNum2;
const numsModulused = userNum1 % userNum2;

6. The values the constants contain are output to the browser:

So, 5 + 4 is 54?? Well, only if 5 and 4 are strings, and, as stated earlier, all user-entered data is treated
as a string. Don’t worry. We will learn how to fix this problem soon.

EVALUATION COPY: Not to be used in class.

❋

2.12. The Default Operator

Default Operator
DescriptionOperator

Used to assign a default value.||

const yourName = prompt("Your Name?", "") || "Stranger";

The following code sample shows how the default operator works:

44 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

Demo 2.4: VariablesArraysOperators/Demos/default.html

-------Lines 1 through 7 Omitted-------
<script>8.
const yourName = prompt("Your Name?","") || "Stranger";9.

10.
alert("Hi " + yourName + "!");11.

</script>12.
-------Lines 13 through 20 Omitted-------

If the user presses OK without filling out the prompt or presses Cancel, the default value “Stranger”
is assigned to the yourName constant.

Why do we need a default operator?

The default operator allows you to make sure that your variable contains a non-null value, so
that you can perform operations on the variable with no errors. To illustrate, do the following
in the Chrome DevTools Console:

1. Enter the following code and press Enter:

let firstName = prompt("First Name:", "");

This will cause a prompt to pop up.

2. Press the Cancel button. This will return null and assign it to firstName:

3. Enter the following code and press Enter:

let greeting = "Hello, " + firstName;

4. Then output greeting and you’ll see this strange result:

LESSON 2: Variables, Arrays, and Operators | 45

EVALUATION COPY: Not to be used in class.

Now repeat the above, but start with:

let firstName = prompt("First Name:", "") || "Stranger";

This time, when you press Cancel, the default value of “Stranger” will be assigned to firstName
and the concatenation operation will work fine:

46 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

 Exercise 4: Working with Operators
 15 to 25 minutes

In this exercise, you will practice working with JavaScript operators.

1. Open VariablesArraysOperators/Exercises/operators.html for editing.

2. Add code to prompt the user for the number of songs they have downloaded of their favorite
and second favorite rock stars:

LESSON 2: Variables, Arrays, and Operators | 47

EVALUATION COPY: Not to be used in class.

3. In the body, let the user know how many more of their favorite rock star’s songs they have
than of their second favorite rock star’s songs:

4. Test your solution in a browser.

48 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

Exercise Code 4.1:VariablesArraysOperators/Exercises/operators.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
const rockStars = [];9.
rockStars[0] = prompt("Who is your favorite rock star?", "");10.
/*11.
Ask the user how many of this rockstar's songs they have downloaded12.
and store the result in a variable.13.
*/14.
rockStars[1] = prompt("And your next favorite rock star?", "");15.
/*16.
Ask the user how many of this rockstar's songs they have downloaded17.
and store the result in a variable.18.
*/19.

</script>20.
<title>JavaScript Operators</title>21.
</head>22.
<body>23.
<main>24.
<!--25.
Let the user know how many more of their favorite rock star's songs26.
they have than of their second favorite rock star's songs.27.

-->28.
</main>29.
</body>30.
</html>31.

Challenge

1. Open VariablesArraysOperators/Exercises/operators-challenge.html for editing.

2. Modify it so that it outputs an unordered list as shown below:

LESSON 2: Variables, Arrays, and Operators | 49

EVALUATION COPY: Not to be used in class.

Don’t worry about the 54. We will learn how to fix the addition problem soon.

50 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

LESSON 2: Variables, Arrays, and Operators | 51

EVALUATION COPY: Not to be used in class.

Solution: VariablesArraysOperators/Solutions/operators.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
const rockStars = [];9.
const songTotals = [];10.
rockStars[0] = prompt("Who is your favorite rock star?", "");11.
songTotals[0] = prompt("How many " + rockStars[0] +12.

" songs do you have?", "");13.
rockStars[1] = prompt("And your next favorite rock star?", "");14.
songTotals[1] = prompt("How many " + rockStars[1] +15.

" songs do you have?", "");16.
</script>17.
<title>JavaScript Operators</title>18.
</head>19.
<body>20.
<main>21.
<script>22.
const diff = songTotals[0] - songTotals[1];23.
document.write("You have " + diff + " more songs of " + rockStars[0]);24.
document.write(" than you have of " + rockStars[1] + ".");25.
</script>26.

</main>27.
</body>28.
</html>29.

52 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

Challenge Solution:
VariablesArraysOperators/Solutions/operators-challenge.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
const userNum1 = prompt("Choose a number.", "");9.
alert("You chose " + userNum1);10.
const userNum2 = prompt("Choose another number.", "");11.
alert("You chose " + userNum2);12.
const numsAdded = userNum1 + userNum2;13.
const numsSubtracted = userNum1 - userNum2;14.
const numsMultiplied = userNum1 * userNum2;15.
const numsDivided = userNum1 / userNum2;16.
const numsModulused = userNum1 % userNum2;17.

</script>18.
<title>JavaScript Operators</title>19.
</head>20.
<body>21.
<main>22.
23.
<script>24.
document.write("" + userNum1 + " + " + userNum2 + " = ");25.
document.write(numsAdded + "");26.
document.write("" + userNum1 + " - " + userNum2 + " = ");27.
document.write(numsSubtracted + "");28.
document.write("" + userNum1 + " * " + userNum2 + " = ");29.
document.write(numsMultiplied + "");30.
document.write("" + userNum1 + " / " + userNum2 + " = ");31.
document.write(numsDivided + "");32.
document.write("" + userNum1 + " % " + userNum2 + " = ");33.
document.write(numsModulused + "");34.

</script>35.
36.
</main>37.
</body>38.
</html>39.

LESSON 2: Variables, Arrays, and Operators | 53

EVALUATION COPY: Not to be used in class.

Conclusion

In this lesson, you have learned to work with JavaScript variables, arrays and operators.

54 | LESSON 2: Variables, Arrays, and Operators

EVALUATION COPY: Not to be used in class.

LESSON 3
JavaScript Functions

EVALUATION COPY: Not to be used in class.

Topics Covered

 JavaScript’s global functions and objects.

 Creating your own functions.

 Returning values from functions.

Introduction

In this lesson, you will learn to use some of JavaScript’s built-in-functions, and you will also learn to
create your own.

EVALUATION COPY: Not to be used in class.

❋

3.1. Global Objects and Functions

A “global” function or object is one that is accessible from anywhere. JavaScript has a number of global
objects and functions. We will examine some of them in this section.

 3.1.1. parseFloat(object)

The parseFloat() function takes one argument: an object, and attempts to return a floating point
number, which is a decimal number. If it cannot, it returns NaN, for “Not a Number.”

Remember when we “add” two strings using the plus sign (+), the strings are concatenated together,
as the following code illustrates:

LESSON 3: JavaScript Functions | 55

EVALUATION COPY: Not to be used in class.

const strNum1 = '1';
const strNum2 = '2';
const strSum = strNum1 + strNum2;
strSum; // will return "12"

Because strNum1 and strNum2 are both strings, the + operator concatenates them, resulting in "12".

We can use parseFloat() to convert those strings to numbers before adding them:

const strNum1 = '1';
const strNum2 = '2';
const num1 = parseFloat(strNum1);
const num2 = parseFloat(strNum2);
const sum = num1 + num2;
sum; // will return 3

After the parseFloat() function has been used to convert the strings to numbers, the + operator
performs addition, resulting in 3.

If the value passed to parseFloat() doesn’t start with a number, the function returns NaN:

parseFloat('I want 1.5 apples'); // will return NaN

 3.1.2. parseInt(object)

The parseInt() function is similar to parseFloat(). It takes one argument: an object, and attempts
to return an integer. If it cannot, it returns NaN, for “Not a Number.”

As you can see from the following code, parseInt() just strips everything to the right of the first
integer it finds. If the value passed to parseInt() doesn’t start with an integer, the function returns
NaN:

parseInt('1'); // will return 1
parseInt('1.5'); // will return 1
parseInt('1.5 apples'); // will return 1
parseInt('I want 1.5 apples'); // will return NaN

56 | LESSON 3: JavaScript Functions

EVALUATION COPY: Not to be used in class.

 3.1.3. isNaN(object)

The isNaN() function takes one argument: an object. The function checks if the object is not a number
(or cannot be converted to a number). It returns true if the object is not a number and false if it is
a number:

isNaN(4); // will return false
isNaN('4'); // will return false
isNaN('hello'); // will return true

As you can see from the code above, if the passed-in value is a number or can be converted into a
number (e.g., 4 and '4'), isNaN() returns false. Otherwise (e.g., 'hello'), it returns true, meaning
that it is indeed Not a Number.

LESSON 3: JavaScript Functions | 57

EVALUATION COPY: Not to be used in class.

 Exercise 5:Working with Global Functions
 10 to 15 minutes

In this exercise, you will practice working with JavaScript’s global functions.

1. Open JavaScriptFunctions/Exercises/built-in-functions.html for editing.

2. As the code is currently written (see below), it will concatenate the user-entered numbers
rather than add them. Fix this so that it outputs the sum of the two numbers entered by the
user.

Exercise Code 5.1: JavaScriptFunctions/Exercises/built-in-functions.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
let userNum1;9.
let userNum2;10.
let numsAdded;11.
userNum1 = window.prompt("Choose a number.", "");12.
alert("You chose " + userNum1);13.
userNum2 = window.prompt("Choose another number.", "");14.
alert("You chose " + userNum2);15.
numsAdded = userNum1 + userNum2;16.

</script>17.
<title>JavaScript Built-in Functions</title>18.
</head>19.
<body>20.
<p>21.
<script>22.
document.write(userNum1 + " + " + userNum2 + " = ");23.
document.write(numsAdded);24.

</script>25.
</p>26.
</body>27.
</html>28.

58 | LESSON 3: JavaScript Functions

EVALUATION COPY: Not to be used in class.

Challenge

Create a new HTML file that prompts the user for

1. Their name:

The age at which they first worked on a computer:

And their current age:

After gathering this information, write out to the page how many years they have been working
on a computer:

LESSON 3: JavaScript Functions | 59

EVALUATION COPY: Not to be used in class.

Notice that the program is able to deal with numbers followed by strings (e.g., “12 years old”).

60 | LESSON 3: JavaScript Functions

EVALUATION COPY: Not to be used in class.

LESSON 3: JavaScript Functions | 61

EVALUATION COPY: Not to be used in class.

Solution: JavaScriptFunctions/Solutions/built-in-functions.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
let userNum1;9.
let userNum2;10.
let numsAdded;11.
userNum1 = window.prompt("Choose a number.", "");12.
alert("You chose " + userNum1);13.
userNum2 = window.prompt("Choose another number.", "");14.
alert("You chose " + userNum2);15.
numsAdded = parseFloat(userNum1) + parseFloat(userNum2);16.

</script>17.
<title>JavaScript Built-in Functions</title>18.
</head>19.
<body>20.
<main>21.
<p>22.
<script>23.
document.write(userNum1 + " + " + userNum2 + " = ");24.
document.write(numsAdded);25.

</script>26.
</p>27.

</main>28.
</body>29.
</html>30.

62 | LESSON 3: JavaScript Functions

EVALUATION COPY: Not to be used in class.

Challenge Solution:
JavaScriptFunctions/Solutions/built-in-functions-challenge.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
const userName = prompt("What's your name?");9.
const age1 = prompt('How old were you when you first used a computer?');10.
const age2 = prompt('How old are you now?');11.
const diff = parseFloat(age2) - parseFloat(age1);12.

</script>13.
<title>JavaScript Built-in Functions</title>14.
</head>15.
<body>16.
<main>17.
<p>18.
<script>19.
document.write(userName + ', you have used '20.

+'computers for ' + diff + ' years.');21.
</script>22.
</p>23.

</main>24.
</body>25.
</html>26.

Code Explanation

You may have noticed that we are not including the second argument, which is the default value, for
prompt() in the challenge solution. While these could be written as const age2 = prompt("How
old are you now?", "");, this is not necessary as an empty string is the default value.

EVALUATION COPY: Not to be used in class.

❋

LESSON 3: JavaScript Functions | 63

EVALUATION COPY: Not to be used in class.

3.2. User-defined Functions

Writing functions makes it possible to reuse code for common tasks. Functions can also be used to
hide complex code. For example, an experienced developer can write a function for performing a
complicated task. Other developers do not need to know how that function works; they only need to
know how to call it.

 3.2.1. Function Syntax

JavaScript functions generally appear in the head of the page or in external JavaScript files. A function
is written using the function keyword followed by the name of the function.

function doSomething() {
//function statements go here

}

As you can see, the body of the function is contained within curly brackets ({}). The following example
demonstrates the use of simple functions:

64 | LESSON 3: JavaScript Functions

EVALUATION COPY: Not to be used in class.

Demo 3.1: JavaScriptFunctions/Demos/simple-functions.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function changeBgRed() {9.
document.body.style.backgroundColor = "red";10.

}11.
12.

function changeBgWhite() {13.
document.body.style.backgroundColor = "white";14.

}15.
</script>16.
<title>JavaScript Simple Functions</title>17.
</head>18.
<body>19.
<button onclick="changeBgRed();">Red</button>20.
<button onclick="changeBgWhite();">White</button>21.

</body>22.
</html>23.

When the user clicks one of the buttons, the event is captured by the onclick event handler and the
corresponding function is called.

 3.2.2. Passing Values to Functions

The functions above aren’t very useful because they always do the same thing. Every time we wanted
to add another color, we would have to write another function. Also, if we want to modify the behavior,
we will have to do it in each function. The following example shows how to create a single function
to handle changing the background color.

LESSON 3: JavaScript Functions | 65

EVALUATION COPY: Not to be used in class.

Demo 3.2: JavaScriptFunctions/Demos/passing-values.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function changeBg(color) {9.
document.body.style.backgroundColor = color;10.

}11.
</script>12.
<title>Passing Values</title>13.
</head>14.
<body>15.
<button onclick="changeBg('red');">Red</button>16.
<button onclick="changeBg('white');">White</button>17.

</body>18.
</html>19.

As you can see, when calling the changeBg() function, we pass a value (e.g., 'red'), which is assigned
to the color variable. We can then refer to the color variable throughout the function. Variables
created in this way are called “parameters” and the values passed to them are called “arguments”. A
function can have any number of parameters, separated by commas.

Adding parameters to functions makes them more flexible and, thus, more useful; as you saw above,
we can call the changeBg() function many times, passing to it a different color as needed. We can
make our functions even more useful by providing default values for parameters so that, if the function
is called without an argument, we assign some default value to the parameter. Here’s how we might
modify our earlier example:

66 | LESSON 3: JavaScript Functions

EVALUATION COPY: Not to be used in class.

Demo 3.3:
JavaScriptFunctions/Demos/passing-values-default-param.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function changeBg(color='blue') {9.
document.body.style.backgroundColor = color;10.

}11.
</script>12.
<title>Passing Values - Default Param</title>13.
</head>14.
<body>15.
<p>16.
<button onclick="changeBg('red');">Red</button>17.
<button onclick="changeBg('white');">White</button>18.
<button onclick="changeBg();">Blue (no param)</button>19.

</p>20.
</body>21.
</html>22.

We’ve added a default value for changeBg’s color parameter, giving it the value 'blue' if no value
is supplied when the function is called. We’ve also added a third button on which the user can click;
here we call changeBg() (without a parameter for color) and thus get the default color 'blue'.

A Note on Variable Scope

A variable’s “scope” is the context in which the variable can be referenced. Variables created by
passing arguments to function parameters are local to the function, meaning that they cannot
be accessed outside of the function. The same is true for variables declared within a function
using the let keyword.

Variables declared with let outside of a function can only be used in the block of code in which
the variable is defined.

LESSON 3: JavaScript Functions | 67

EVALUATION COPY: Not to be used in class.

 Exercise 6: Writing a JavaScript Function
 15 to 25 minutes

In this exercise, you will modify a page called resize-box.html, which will contain a box and two
buttons for resizing the box:

1. Open JavaScriptFunctions/Exercises/resize-box.html for editing.

2. Notice that the page has a div with the id “box” and width and height styles set.

3. The page also contains two buttons that call resizeBox() passing in -10 and 10 for the
change argument.

4. Write a function called resizeBox() that has one parameter: change, which is the amount
the width and height of the box should be changed. The default value of change should be
10. The resizeBox() function will need to do the following:

A. Declare a constant box that holds the “box” div. You will do this using
document.getElementById(), which is a method for accessing elements on the
page by their id value:

const box = document.getElementById('box');

B. Declare a constant w that holds the current width of the box. You will do this with
the following line of code:

const w = box.style.width;

68 | LESSON 3: JavaScript Functions

EVALUATION COPY: Not to be used in class.

Note that the value will be a string ending in “px” as shown below. This is because
width and height style values take a number and a unit.

C. Just as you did for width, declare a constant h that holds the current height of the
box.

D. Declare variables wNew and hNew that contain the new width and height values.
Note that you will need to add the value of change to the current values of w and
h, but before doing so, you will need to strip off the “px” from w and h and convert
those values to numbers. You can do that with parseInt().

E. Assign the new values of w and h to box.style.width and box.style.height.
Note that you will need to append (concatenate) “px” back to those values.

Exercise Code 6.1: JavaScriptFunctions/Exercises/resize-box.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
// Write your code here9.

</script>10.
<title>Resize Box</title>11.
</head>12.
<body id="resize-box">13.
<main>14.
<div id="box" style="width:100px; height:100px;15.

background-color:blue;"></div>16.
<button onclick="resizeBox(-10)">SHRINK</button>17.
<button onclick="resizeBox(10)">GROW</button>18.

</main>19.
</body>20.
</html>21.

LESSON 3: JavaScript Functions | 69

EVALUATION COPY: Not to be used in class.

Challenge

Add separate buttons for changing height and width:

As we haven’t learned to write conditional code yet, you will need to write separate functions; for
example, resizeBoxHeight() and resizeBoxWidth().

70 | LESSON 3: JavaScript Functions

EVALUATION COPY: Not to be used in class.

LESSON 3: JavaScript Functions | 71

EVALUATION COPY: Not to be used in class.

Solution: JavaScriptFunctions/Solutions/resize-box.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function resizeBox(change=10) {9.
const box = document.getElementById('box');10.
const w = box.style.width;11.
const h = box.style.height;12.
const wNew = parseInt(w) + change;13.
const hNew = parseInt(h) + change;14.
box.style.width = wNew + 'px';15.
box.style.height = hNew + 'px';16.

}17.
</script>18.
<title>Resize Box</title>19.
</head>20.
<body id="resize-box">21.
<main>22.
<div id="box" style="width:100px; height:100px;"></div>23.
<button onclick="resizeBox(-10)">SHRINK</button>24.
<button onclick="resizeBox(10)">GROW</button>25.

</main>26.
</body>27.
</html>28.

72 | LESSON 3: JavaScript Functions

EVALUATION COPY: Not to be used in class.

Challenge Solution:
JavaScriptFunctions/Solutions/resize-box-challenge.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function resizeHeight(change=10) {9.
const box = document.getElementById('box');10.
const h = box.style.height;11.
const hNew = parseInt(h) + change;12.
box.style.height = hNew + 'px';13.

}14.
15.

function resizeWidth(change=10) {16.
const box = document.getElementById('box');17.
const w = box.style.width;18.
const wNew = parseInt(w) + change;19.
box.style.width = wNew + 'px';20.

}21.
</script>22.
<title>Resize Box - Challenge</title>23.
</head>24.
<body id="resize-box">25.
<main>26.
<div id="box" style="width:100px; height:100px;"></div>27.
<button onclick="resizeHeight(-10)">SHRINK HEIGHT</button>28.
<button onclick="resizeHeight(10)">GROW HEIGHT</button>
29.
<button onclick="resizeWidth(-10)">SHRINK WIDTH</button>30.
<button onclick="resizeWidth(10)">GROW WIDTH</button>31.

</main>32.
</body>33.
</html>34.

EVALUATION COPY: Not to be used in class.

❋

LESSON 3: JavaScript Functions | 73

EVALUATION COPY: Not to be used in class.

3.3. Returning Values from Functions

The return keyword is used to return values from functions as the following example illustrates:

Demo 3.4: JavaScriptFunctions/Demos/return-value.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function setBgColor() {9.
const bg = prompt("Set Background Color:", "");10.
document.body.style.backgroundColor = bg;11.

}12.
13.

function getBgColor() {14.
return document.body.style.backgroundColor;15.

}16.
</script>17.
<title>Returning a Value</title>18.
</head>19.
<body>20.
<button onclick="setBgColor()">Set Background Color</button>21.
<button onclick="alert(getBgColor())">Get Background Color</button>22.

</body>23.
</html>24.

When the user clicks the “Get Background Color” button, an alert pops up with a value returned from
the getBgColor() function. This is a very simple example. Generally, functions that return values are
a bit more involved. We’ll see many more functions that return values throughout the course.

Conclusion

In this lesson, you have learned to work with JavaScript’s global functions and to create functions of
your own.

74 | LESSON 3: JavaScript Functions

EVALUATION COPY: Not to be used in class.

LESSON 4
Built-In JavaScript Objects

EVALUATION COPY: Not to be used in class.

Topics Covered

 Built-in String object.

 Built-in Math object.

 Built-in Date object.

Introduction

JavaScript has some predefined, built-in objects that enable you to work with Strings and Dates, and
perform mathematical operations.

EVALUATION COPY: Not to be used in class.

❋

4.1. String

In JavaScript, there are two types of string data types: primitive strings and String objects. String objects
have many methods for manipulating and parsing strings of text. Because these methods are available
to primitive strings as well, in practice, there is no need to differentiate between the two types of strings.

Some common string properties and methods are shown below. In all the examples, the constant myStr
contains “Webucator”:

const myStr = 'Webucator';

LESSON 4: Built-In JavaScript Objects | 75

EVALUATION COPY: Not to be used in class.

Common String Properties
DescriptionProperty

Read-only value containing the number of characters in the string.length

myStr.length; // returns 9

Try the following out in the Chrome DevTools Console:

const myStr = 'Webucator';
myStr.length; // will return 9

Spend some time going through methods in the table below and trying them out in the Chrome
DevTools Console. Note that most programming languages have similar string methods, though they
may use different names. Some of the string methods will seem obscure (“When would I use that?”).
Don’t worry too much about that. The most important takeaway is to understand that there are a lot
of built-in methods for working with strings and to get some practice using them.

76 | LESSON 4: Built-In JavaScript Objects

EVALUATION COPY: Not to be used in class.

Common String Methods
DescriptionMethod

Returns the character at the specified position.charAt(position)

myStr.charAt(4); // returns 'c'

myStr.charAt(0); // returns 'W'

Searches from startPos (or the beginning of the string, if startPos is not supplied)
for substr. Returns the first position at which substr is found or -1 if substr is
not found.

indexOf(substr,
startPos)

myStr.indexOf("cat"); // returns 4

myStr.indexOf("cat", 5); // returns -1

Searches from endPos (or the end of the string, if endPos is not supplied) for
substr. Returns the last position at which substr is found or -1 is substr is not
found.

lastIndexOf(substr,
endPos)

myStr.lastIndexOf("cat"); // returns 4

myStr.lastIndexOf("cat", 5); // returns 4

Returns the substring beginning at startPos and ending with the character before
endPos. endPos is optional. If it is excluded, the substring continues to the end of
the string.

substring(startPos,
endPos)

myStr.substring(4, 7); // returns cat

myStr.substring(4); // returns cator

Same as substring(startPos, endPos).slice(startPos,
endPos) myStr.slice(4, 7); // returns cat

posFromEnd is a negative integer. Returns the substring beginning at startPos
and ending posFromEnd characters from the end of the string.

slice(startPos,
posFromEnd)

myStr.slice(4, -2); // returns cat

Returns an array by splitting a string on the specified delimiter.split(delimiter)

const s = "A,B,C,D";
const a = s.split(",");
document.write(a[2]); // returns C

LESSON 4: Built-In JavaScript Objects | 77

EVALUATION COPY: Not to be used in class.

DescriptionMethod

Returns the string in all lowercase letters.toLowerCase()

myStr.toLowerCase(); // returns webucator

Returns the string in all uppercase letters.toUpperCase()

myStr.toUpperCase(); // returns WEBUCATOR

Removes leading and trailing whitespace.trim()

' Webucator '.trim(); // returns Webucator with no spaces around it

Below are the same methods from the table above shown in the Chrome DevTools Console:

Splitting a String

The split() method returns an array by splitting a string on the specified delimiter (separator). The
following code illustrates this:

78 | LESSON 4: Built-In JavaScript Objects

EVALUATION COPY: Not to be used in class.

const s = "A,B,C,D";
const a = s.split(",");
a[2]; // returns C

Try it out in the Chrome DevTools Console:

Converting an Object to a String

To convert an object to a string, pass it to String(). For example:

String Documentation

See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Glob
al_Objects/String for full documentation on Strings.

LESSON 4: Built-In JavaScript Objects | 79

EVALUATION COPY: Not to be used in class.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

EVALUATION COPY: Not to be used in class.

❋

4.2. Math

The Math object’s properties and methods are accessed directly (e.g., Math.PI) and are used for
performing complex math operations. Some common math properties and methods are shown below:

Common Math Properties
DescriptionProperty

The value of Pi (Π)Math.PI

Math.PI; //3.141592653589793

Square root of 2.Math.SQRT2

Math.SQRT2; //1.4142135623730951

Try the following out in the Chrome DevTools Console:

Spend some time going through methods in the table below and trying them out in the Chrome
DevTools Console.

80 | LESSON 4: Built-In JavaScript Objects

EVALUATION COPY: Not to be used in class.

Common Math Methods
DescriptionMethod

Absolute value of number.Math.abs(number)

Math.abs(-12); // returns 12

number rounded up.Math.ceil(number)

Math.ceil(5.4); // returns 6

number rounded down.Math.floor(number)

Math.floor(5.6); // returns 5

Highest Number in numbers.Math.max(numbers)

Math.max(2, 5, 9, 3); // returns 9

Lowest Number in numbers.Math.min(numbers)

Math.min(2, 5, 9, 3); // returns 2

number to the power of power.Math.pow(number, power)

Math.pow(2, 5); // returns 32

Rounded number.Math.round(number)

Math.round(2.5); // returns 3

Random number between 0 and 1.Math.random()

Math.random(); // Returns random number from 0 to 1

Below are the same methods from the table above shown in the Chrome DevTools Console:

LESSON 4: Built-In JavaScript Objects | 81

EVALUATION COPY: Not to be used in class.

Method for Generating Random Integers

Because Math.random() returns a decimal value greater than or equal to 0 and less than 1, we can use
the following code to return a random integer between low and high, inclusively (meaning the low
and high values are included):

function randInt(low, high) {
const rndDec = Math.random();
const rndInt = Math.floor(rndDec * (high - low + 1) + low);
return rndInt;

}

And here it is in the Chrome DevTools Console:

82 | LESSON 4: Built-In JavaScript Objects

EVALUATION COPY: Not to be used in class.

Math Documentation

See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Glob
al_Objects/Math for full documentation on Math.

EVALUATION COPY: Not to be used in class.

❋

4.3. Date

The Date object has methods for manipulating dates and times. JavaScript stores dates as the number
of milliseconds since January 1, 1970.

The Epoch

The epoch is the moment that a computer or computer language considers time to have started.
JavaScript considers the epoch to be January 1, 1970 at midnight (1970-01-01 00:00:00)

The following code samples show the different methods of creating date objects, all of which involve
passing arguments to the Date() constructor (a special function for creating objects):

New Date object with current date and time

const now = new Date();
now; // returns Thu Nov 11, 2021 18:40:31 GMT-0500 (Eastern Standard Time

LESSON 4: Built-In JavaScript Objects | 83

EVALUATION COPY: Not to be used in class.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

New Date object with specific date and time

// Syntax: new Date('month dd, yyyy hh:mm:ss')
const moonLanding = new Date('July 21, 1969 16:18:00');
moonLanding; // returns Mon Jul 21, 1969 16:18:00 GMT-0400 (Eastern Daylight Time)

// Alternative Syntax: new Date(year, month, day, hours, min, sec, millisec)
const moonLanding = new Date(1969, 6, 21, 16, 18, 0, 0);
moonLanding; // returns Mon Jul 21, 1969 16:18:00 GMT-0400 (Eastern Daylight Time)

A few things to note:

1. To create a Date object containing the current date and time, the Date() constructor takes
no arguments.

2. When passing the date as a string to the Date() constructor, the time portion is optional. If
it is not included, it defaults to 00:00:00. Also, other date formats are acceptable (e.g.,
'6/21/1969' and '06-21-1969').

3. When passing date parts to the Date() constructor, dd, hh, mm, ss, and ms are all optional.
The default for dd is 1; the other parameters default to 0.

4. Months are numbered from 0 (January) to 11 (December). In the example above, 6 represents
July.

Some common date methods are shown below. In all the examples, the variable moonLanding contains
the date Mon Jul 21, 1969 16:18:00 GMT-0400 (Eastern Daylight Time).

84 | LESSON 4: Built-In JavaScript Objects

EVALUATION COPY: Not to be used in class.

Common Date Methods
DescriptionMethod

Returns the day of the month (1-31).getDate()

moonLanding.getDate();
// returns 21

Returns the day of the week as a number (0-6, 0=Sunday, 6=Saturday).getDay()

moonLanding.getDay();
// returns 1

Returns the month as a number (0-11, 0=January, 11=December).getMonth()

moonLanding.getMonth();
// returns 6

Returns the four-digit year.getFullYear()

moonLanding.getFullYear();
// returns 1969

Returns the hour (0-23).getHours()

moonLanding.getHours();
// returns 16

Returns the minute (0-59).getMinutes()

moonLanding.getMinutes();
// returns 18

Returns the second (0-59).getSeconds()

moonLanding.getSeconds();
// returns 0

Returns the millisecond (0-999).getMilliseconds()

moonLanding.getMilliseconds();
// returns 0

Returns the number of milliseconds since midnight January 1, 1970.getTime()

moonLanding.getTime();
// returns -14096520000. It’s negative, because it’s before the epoch.

LESSON 4: Built-In JavaScript Objects | 85

EVALUATION COPY: Not to be used in class.

DescriptionMethod

Returns the time difference in minutes between the user’s computer and GMT.getTimezoneOffset()

moonLanding.getTimezoneOffset();
// returns 240

Returns the Date object as a string.toLocaleString()

moonLanding.toLocaleString();
// returns '7/21/1969, 4:18:00 PM'

Returns the date portion of a Date object as a string.toLocaleDateString()

moonLanding.toLocaleDateString();
// returns '7/21/1969'

Returns the time portion of a Date object as a string.toLocaleTimeString()

moonLanding.toLocaleTimeString();
// returns '4:18:00 PM'

Returns the Date object as a string in GMT timezone.toGMTString()

moonLanding.toGMTString();
// returns 'Mon, 21 Jul 1969 20:18:00 GMT'

Below are the same methods from the table above shown in the Chrome DevTools Console:

86 | LESSON 4: Built-In JavaScript Objects

EVALUATION COPY: Not to be used in class.

Date Documentation

See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Glob
al_Objects/Date for full documentation on Date.

LESSON 4: Built-In JavaScript Objects | 87

EVALUATION COPY: Not to be used in class.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

Let’s see how we can use dates to build useful helper functions.

EVALUATION COPY: Not to be used in class.

❋

4.4. Helper Functions

Some languages have functions that return the month as a string. JavaScript doesn’t have such a built-in
function. The following sample shows a user-defined “helper” function that handles this and how the
getMonth() method of a Date object can be used to get the month.

Demo 4.1: BuiltInObjects/Demos/month-as-string.html

-------Lines 1 through 7 Omitted-------
<script>8.
function monthAsString(num) {9.
const months = ["January", "February", "March", "April",10.

"May", "June", "July", "August", "September",11.
"October", "November", "December"];12.

return months[num-1];13.
}14.

15.
function enterMonth() {16.
const userMonth = prompt("What month were you born?", "");17.
alert("You were born in " + monthAsString(userMonth) + ".");18.

}19.
20.

function getCurrentMonth() {21.
const today = new Date();22.
alert(monthAsString(today.getMonth()+1));23.

}24.
</script>25.
-------Lines 26 through 34 Omitted-------

Run this page in your browser and then click the buttons to see how they work.

88 | LESSON 4: Built-In JavaScript Objects

EVALUATION COPY: Not to be used in class.

 Exercise 7: Returning the Day of the Week
as a String

 15 to 25 minutes

In this exercise, you will create a function that returns the day of the week as a string.

1. Open BuiltInObjects/Exercises/date-udfs.html for editing.

2. Write a dayAsString() function that returns the day of the week as a string, with "1"
returning "Sunday", "2" returning "Monday", etc.

3. Write an enterDay() function that prompts the user for the day of the week (as a number)
and then alerts the string value of that day by calling the dayAsString() function.

4. Write a getCurrentDay() function that alerts today’s actual day of the week according to
the user’s machine.

5. Add a CHOOSE DAY button that calls the enterDay() function.

6. Add a GET CURRENT DAY button that calls the getCurrentDay() function.

7. Test your solution in a browser.

LESSON 4: Built-In JavaScript Objects | 89

EVALUATION COPY: Not to be used in class.

Solution: BuiltInObjects/Solutions/date-udfs.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function monthAsString(num) {9.
const months = [];10.
months[0] = "January";11.
months[1] = "February";12.
months[2] = "March";13.
months[3] = "April";14.
months[4] = "May";15.
months[5] = "June";16.
months[6] = "July";17.
months[7] = "August";18.
months[8] = "September";19.
months[9] = "October";20.
months[10] = "November";21.
months[11] = "December";22.

23.
return months[num-1];24.

}25.
26.

function dayAsString(num) {27.
const weekDays = [];28.
weekDays[0] = "Sunday";29.
weekDays[1] = "Monday";30.
weekDays[2] = "Tuesday";31.
weekDays[3] = "Wednesday";32.
weekDays[4] = "Thursday";33.
weekDays[5] = "Friday";34.
weekDays[6] = "Saturday";35.

36.
return weekDays[num-1];37.

}38.
39.

function enterMonth() {40.
const userMonth = prompt("What month were you born?", "");41.
alert("You were born in " + monthAsString(userMonth) + ".");42.

}43.
44.

90 | LESSON 4: Built-In JavaScript Objects

EVALUATION COPY: Not to be used in class.

function getCurrentMonth() {45.
const today = new Date();46.
alert(monthAsString(today.getMonth()+1));47.

}48.
49.

function enterDay() {50.
const userDay = prompt("What day of the week is it?", "");51.
alert("Today is " + dayAsString(userDay) + ".");52.

}53.
54.

function getCurrentDay() {55.
const today = new Date();56.
alert(dayAsString(today.getDay()+1));57.

}58.
</script>59.
<title>Date UDFs</title>60.
</head>61.
<body>62.
<main>63.
<button onclick="enterMonth()">CHOOSE MONTH</button>64.
<button onclick="getCurrentMonth()">GET CURRENT MONTH</button>65.
<hr>66.
<button onclick="enterDay()">CHOOSE DAY</button>67.
<button onclick="getCurrentDay()">GET CURRENT DAY</button>68.

</main>69.
</body>70.
</html>71.

Conclusion

In this lesson, you have learned to work with some of JavaScript’s most useful built-in objects.

LESSON 4: Built-In JavaScript Objects | 91

EVALUATION COPY: Not to be used in class.

92 | LESSON 4: Built-In JavaScript Objects

EVALUATION COPY: Not to be used in class.

LESSON 5
Conditionals and Loops

EVALUATION COPY: Not to be used in class.

Topics Covered

if - else if - else blocks.

switch / case blocks.

 Loops.

Introduction

In this lesson, you will learn to branch your code using if and switch conditions, and to use different
types of loops.

EVALUATION COPY: Not to be used in class.

❋

5.1. Conditionals

There are two types of conditionals in JavaScript:

1. if - else if - else

2. switch / case

LESSON 5: Conditionals and Loops | 93

EVALUATION COPY: Not to be used in class.

 5.1.1. if - else if - else Conditions

if (conditions) {
statements;

} else if (conditions) {
statements;

} else {
statements;

}

Like with functions, each part of the if - else if - else block is contained within curly brackets
({}). There can be zero or more else if blocks. The else block is optional.

Comparison Operators
DescriptionOperator

Equals==

Doesn’t equal!=

Strictly equals===

Doesn’t strictly equal!==

Is greater than>

Is less than<

Is greater than or equal to>=

Is less than or equal to<=

Note the difference between == (equals) and === (strictly equals). For two objects to be strictly equal
they must be of the same value and the same type, whereas to be equal they must only have the same
value. See the code samples below:

94 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

Notice that 0 is equal to, but not strictly equal to, an empty string. Both these values are falsy, meaning
that when they are treated as Booleans, they are considered to be false. More on this soon.

It is almost always better to use the strictly equals operator (===) and the corresponding doesn’t strictly
equal operator (!==) as these help avoid unanticipated errors.

Logical Operators
ExampleDescriptionOperator

(a == b && c != d)and&&

(a == b || c != d)or||

!(a == b || c == d)not!

The following example shows a function using an if - else if - else condition.

LESSON 5: Conditionals and Loops | 95

EVALUATION COPY: Not to be used in class.

Demo 5.1: ConditionalsAndLoops/Demos/if-else-if-else.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function checkAge() {9.
const age = prompt("Your age?", "") || "";10.

11.
if (age >= 21) {12.
alert("You can vote and drink!");13.

} else if (age >= 18) {14.
alert("You can vote, but can't drink.");15.

} else {16.
alert("You cannot vote or drink.");17.

}18.
}19.

</script>20.
<title>JavaScript Conditionals Demo</title>21.
</head>22.
<body>23.
<main>24.
<h1>JavaScript if - else if - else Demo</h1>25.
<h2>Age Check</h2>26.
<button onclick="checkAge()">Age Check</button>27.

</main>28.
</body>29.
</html>30.

The display of the page is shown below:

96 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

When the user clicks the Age Check button, the following prompt pops up:

After the user enters their age, an alert pops up. The text of the alert depends on the user’s age. The
three possibilities are shown below:

LESSON 5: Conditionals and Loops | 97

EVALUATION COPY: Not to be used in class.

Compound Conditions

Compound conditions are conditions that check for multiple things. See the following sample:

if (age > 18 && isCitizen) {
alert("You can vote!");

}

if (age >= 16 && (isCitizen || hasGreenCard)) {
alert("You can work in the United States");

}

EVALUATION COPY: Not to be used in class.

❋

5.2. Short-circuiting

JavaScript is lazy (or efficient) about processing compound conditions. As soon as it can determine the
overall result of the compound condition, it stops looking at the remaining parts of the condition:

Short-circuiting is useful for checking that a variable is of the right data type before you try to manipulate
it.

98 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

To illustrate, take a look at the following sample:

Demo 5.2: ConditionalsAndLoops/Demos/password-check-broken.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
const userPass = prompt("Password:", ""); //ESC here causes problems9.
const pw = "xyz";10.

</script>11.
<title>Password Check</title>12.
</head>13.
<body>14.
<main>15.
<script>16.
if (userPass.toLowerCase() === pw) {17.
document.write("<h1>Welcome!</h1>");18.

} else {19.
document.write("<h1>Bad Password!</h1>");20.

}21.
</script>22.

</main>23.
</body>24.
</html>25.

Everything works fine as long as the user does what you expect. However, if the user clicks the Cancel
button when prompted for a password, the value null will be assigned to userPass. Because null is
not a string, it does not have the toLowerCase() method. So the following line will result in a JavaScript
error:

if (userPass.toLowerCase() === pw)

You can see the error in Chrome DevTools Console:

LESSON 5: Conditionals and Loops | 99

EVALUATION COPY: Not to be used in class.

This can be fixed by using typeof (described below) to first check if userPass is a string as shown
in the following sample:

The typeof Operator

The typeof operator is used to find out the type of a piece of data. The following screenshot
shows what the typeof operator returns for different data types:

100 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

Demo 5.3: ConditionalsAndLoops/Demos/password-check.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
const userPass = prompt("Password:", "");9.
const pw = "xyz";10.

</script>11.
<title>Password Check</title>12.
</head>13.
<body>14.
<main>15.
<script>16.
if (typeof userPass === "string" && userPass.toLowerCase() === pw) {17.
document.write("<h1>Welcome!</h1>");18.

} else {19.
document.write("<h1>Bad Password!</h1>");20.

}21.
</script>22.

</main>23.
</body>24.
</html>25.

Now, if the user presses Cancel and userPass gets null, this check will fail: typeof userPass ===
"string". Because the if condition uses && requiring that both conditions are true for the whole
statement to be true, there is no reason to check the second condition if the first condition is false. So,
JavaScript short circuits, meaning it immediately returns false without wasting time checking the
second condition.

Short circuiting also works with or conditions (e.g., if (a or b)). In this case, the whole statement
is true if either side of the or condition is true. So, if a is true, there is no reason to check b. JavaScript
will short circuit and return true.

EVALUATION COPY: Not to be used in class.

❋

LESSON 5: Conditionals and Loops | 101

EVALUATION COPY: Not to be used in class.

5.3. Switch / Case

switch (expression) {
case value :
statements;

case value :
statements;

default :
statements;

}

Like if - else if - else statements, switch / case statements are used to run different code at
different times. Unlike if statements, switch / case statements are limited to checking for equality.
Each case is checked to see if the expression matches the value.

Take a look at the following example:

102 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

Demo 5.4: ConditionalsAndLoops/Demos/switch-without-break.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
const quantity = 1;9.
switch (quantity) {10.
case 1 :11.
alert("quantity is 1");12.

case 2 :13.
alert("quantity is 2");14.

default :15.
alert("quantity is not 1 or 2");16.

}17.
</script>18.
<title>Switch</title>19.
</head>20.
<body>21.
<main>22.
<p>Nothing to show here.</p>23.

</main>24.
</body>25.
</html>26.

When you run this page in a browser, you’ll see that all three alerts pop up, even though only the first
case is a match:

LESSON 5: Conditionals and Loops | 103

EVALUATION COPY: Not to be used in class.

That’s because if a match is found, none of the remaining cases are checked and all the remaining
statements in the switch block are executed. To stop this process, you can insert a break statement,
which will end the processing of the switch statement.

The corrected code is shown in the following example:

Demo 5.5: ConditionalsAndLoops/Demos/switch-with-break.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
const quantity = 1;9.
switch (quantity) {10.
case 1 :11.
alert("quantity is 1");12.
break;13.

case 2 :14.
alert("quantity is 2");15.
break;16.

default :17.
alert("quantity is not 1 or 2");18.

}19.
</script>20.
<title>Switch</title>21.
</head>22.
<body>23.
<main>24.
<p>Nothing to show here.</p>25.

</main>26.
</body>27.
</html>28.

104 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

The following example shows how a switch / case statement can be used to decide what math
operation to perform:

LESSON 5: Conditionals and Loops | 105

EVALUATION COPY: Not to be used in class.

Demo 5.6: ConditionalsAndLoops/Demos/do-math.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function doMath(operator) {9.
const n1 = parseFloat(document.getElementById('n1').value);10.
const n2 = parseFloat(document.getElementById('n2').value);11.
let result;12.
switch (operator) {13.
case "+":14.
result = n1 + n2;15.
break;16.

case "-":17.
result = n1 - n2;18.
break;19.

case "*":20.
result = n1 * n2;21.
break;22.

case "/":23.
result = n1 / n2;24.
break;25.

default:26.
alert("Bad operator");27.

}28.
alert(n1 + operator + n2 + '=' + result);29.

}30.
</script>31.
<title>doMath</title>32.
</head>33.
<body>34.
<main>35.
<label for="n1">First Number:</label> <input id="n1">36.
<label for="n2">Second Number:</label> <input id="n2">37.
<button onclick="doMath('+')">Add</button>38.
<button onclick="doMath('-')">Subtract</button>39.
<button onclick="doMath('*')">Multiply</button>40.
<button onclick="doMath('/')">Divide</button>41.

</main>42.
</body>43.
</html>44.

106 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

Use Case for switch Without break

In most cases, you will include break statements in your switch conditions; however, there are cases
when it makes sense to continue to execute all the subsequent statements in a switch condition after
a match has been found. Consider the following, in which permissions are being added to an array
based on a user’s role:

const role = 'Admin';
const permissions = [];
switch (role) {
case 'SuperAdmin':
permissions.push('delete');

case 'Admin':
permissions.push('update');

case 'Contributor':
permissions.push('create');

default:
permissions.push('read');

}
console.log(permissions);

The code above will log (3) ['update', 'create', 'read'] to the console. That’s because role
is set to 'Admin'. The logic works as follows:

1. Does role contain 'SuperAdmin'? No, it does not. So, it doesn’t push 'delete' onto the
permissions array.

2. Does role contain 'Admin'? Yes, it does. So, it pushes 'update' onto the permissions
array.

3. Then, it stops checking the cases, because it already found the match. And it continues
executing all the statements until it finds a break or it reaches the end of the switch statement.
In this case, there are no break statements, so it pushes 'create' and 'update' onto the
permissions array.

The result is that SuperAdmin will get all permissions. Admin will get update, create, and read
permissions. Contributor will get create and read permissions. All others will only get read permissions.

Order of Conditions

In conditional statements it’s generally a good practice to test for the most likely cases/matches
first so the browser can find the correct code to execute more quickly.

LESSON 5: Conditionals and Loops | 107

EVALUATION COPY: Not to be used in class.

EVALUATION COPY: Not to be used in class.

❋

5.4. Ternary Operator

The ternary operator provides a shortcut for if conditions. The syntax is as follows:

const constName = (condition) ? valueIfTrue : valueIfFalse;

For example:

const evenOrOdd = (number % 2 === 0) ? "even" : "odd";

The following code sample shows how the ternary operator works:

Demo 5.7: ConditionalsAndLoops/Demos/ternary.html

-------Lines 1 through 7 Omitted-------
<script>8.
const num = parseInt(prompt("Enter a number.",""));9.

10.
//without ternary11.
if (num % 2 === 0) {12.
alert(num + " is even.");13.

} else {14.
alert(num + " is odd.");15.

}16.
17.

//with ternary18.
const term = num % 2 === 0 ? "even" : "odd";19.
alert(num + " is " + term);20.

</script>21.
-------Lines 22 through 29 Omitted-------

The first block shows a regular if-else statement.

The second block shows how to accomplish the same thing in a couple of lines of code with the ternary
operator.

108 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

EVALUATION COPY: Not to be used in class.

❋

5.5. Truthy and Falsy

JavaScript has a boolean data type, which has only two possible values: true or false. In addition,
every value and expression in JavaScript can be converted to true or false.

When a non-boolean literal value, variable, or expressions is used in a boolean context (e.g, an if
condition or with the default operator), it is implicitly converted to a boolean. This process is called
Type Coercion. For example, look at the following code, which uses the default operator:

const a = 1 || 2;

The value 1 is interpreted as true, so a will get 1. Non-boolean values that are treated as true when
used in a boolean context are said to be truthy.

Now examine the following code:

const a = 0 || 2;

The value 0 is interpreted as false, so a will get 2. Non-boolean values that are treated as false when
used in a boolean context are said to be falsy.

The only falsy values are:

1. 0, but not "0", which is a string.

2. "" – a zero-length string.

3. null

4. undefined

5. NaN – a special number value that means “Not a Number”. For example, NaN is the result of
dividing 0 by 0 or finding the square root of a negative number (e.g. Math.sqrt(-1)).

All other values are truthy.

LESSON 5: Conditionals and Loops | 109

EVALUATION COPY: Not to be used in class.

 Exercise 8: Conditional Processing
 20 to 30 minutes

In this exercise, you will practice using conditional processing.

1. Open ConditionalsAndLoops/Exercises/conditionals.html for editing.

2. Notice that there is an onclick event handler on the button that calls the greetUser()
function. Create this function in the script block.

3. The function should do the following:

A. Ask (via a prompt) if the user is right- or left-handed.
B. If the user enters a value other than “right” or “left”, prompt again.
C. Ask (via a prompt) for the user’s last name.
D. If the user leaves the last name blank, prompt again.
E. If the user enters a number for the last name, alert that a last name can’t be a number

and prompt again.
F. After collecting the user’s dominant hand and last name:

If the dominant hand is valid, pop up an alert that greets the user
appropriately (e.g., “Hello Lefty Smith!”)
If the dominant hand is not valid, pop up an alert that reads something like
“XYZ is not a valid value for dominant hand!”

4. Test your solution in a browser.

Challenge

1. Allow the user to enter the dominant hand in any case (e.g., left, Left, LEFT, right, Right,
RIGHT).

2. If the user enters a last name that does not start with a capital letter, prompt to try again.

110 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

LESSON 5: Conditionals and Loops | 111

EVALUATION COPY: Not to be used in class.

Solution: ConditionalsAndLoops/Solutions/conditionals.html

-------Lines 1 through 7 Omitted-------
<script>8.
function greetUser() {9.
let dominantHand;10.
let lastName;11.

12.
dominantHand = prompt("Are you left- or right-handed?", "") || "";13.
if (dominantHand !== "right" && dominantHand !== "left") {14.
dominantHand = prompt("Try again: right or left?", "") || "";15.

}16.
17.

lastName = prompt("What's your last name?", "") || "";18.
if (lastName.length === 0) {19.
lastName = prompt("No last name? Please re-enter:", "") || "";20.

} else if (!isNaN(lastName)) {21.
lastName = prompt("Names aren't numbers. Re-enter:", "") || "";22.

}23.
24.

switch (dominantHand) {25.
case "right" :26.
alert("Hello Righty " + lastName + "!");27.
break;28.

case "left" :29.
alert("Hello Lefty " + lastName + "!");30.
break;31.

default :32.
alert(dominantHand + " is not a valid value for dominant hand!");33.

}34.
}35.
</script>36.
-------Lines 37 through 44 Omitted-------

112 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

Challenge Solution:
ConditionalsAndLoops/Solutions/conditionals-challenge.html

-------Lines 1 through 7 Omitted-------
<script>8.
function greetUser() {9.
let dominantHand;10.
let lastName;11.

12.
dominantHand = prompt("Are you left- or right-handed?", "") || "";13.
dominantHand = dominantHand.toLowerCase();14.
if (dominantHand !== "right" && dominantHand !== "left") {15.
dominantHand = prompt("Try again: right or left?", "") || "";16.

}17.
18.

lastName = prompt("What's your last name?", "") || "";19.
const firstLetter = lastName.substring(0, 1);20.
if (lastName.length === 0) {21.
lastName = prompt("No last name? Please re-enter:", "") || "";22.

} else if (!isNaN(lastName)) {23.
lastName = prompt("Names aren't numbers. Re-enter:", "") || "";24.

} else if (firstLetter === firstLetter.toLowerCase()) {25.
lastName = prompt("Names begin with capital letters. Re-enter:", "") || "";26.

}27.
28.

switch (dominantHand) {29.
case "right" :30.
alert("Hello Righty " + lastName + "!");31.
break;32.

case "left" :33.
alert("Hello Lefty " + lastName + "!");34.
break;35.

default :36.
alert(dominantHand + " is not a valid value for dominant hand!");37.

}38.
}39.
</script>40.
-------Lines 41 through 48 Omitted-------

EVALUATION COPY: Not to be used in class.

❋

LESSON 5: Conditionals and Loops | 113

EVALUATION COPY: Not to be used in class.

5.6. Loops

There are several types of loops in JavaScript:

while

do…while

for

for…in

for…of

EVALUATION COPY: Not to be used in class.

❋

5.7. while and do…while Loops

 5.7.1. while Loop Syntax

while (conditions) {
statements;

}

The while loop first checks one or more conditions and then executes the statements in its body as
long as those conditions are true. Something, usually a statement within the while block, must cause
the condition to change so that it eventually becomes false and causes the loop to end. Otherwise, you
get stuck in an infinite loop, which can bring down the browser.

Here is an example of a while loop:

let i=0;
while (i < 5) {
console.log(i);
i++; // changing value of i

}

And here’s the above code executed at Chrome DevTools Console:

114 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

 5.7.2. do…while Loop Syntax

do {
statements;

} while (conditions);

The do…while loop checks the conditions after each execution of the statements in the body. Again,
something, usually a statement within the do block, must cause the condition to change so that it
eventually becomes false and causes the loop to end.

Here is an example of a do…while loop:

let i=0;
do {
console.log(i);
i++; // changing value of i

} while (i < 5);

And here’s the above code executed at Chrome DevTools Console:

LESSON 5: Conditionals and Loops | 115

EVALUATION COPY: Not to be used in class.

Unlike with while loops, the statements in do…while loops will always execute at least one time
because the conditions are not checked until the end of each iteration. The following code illustrates
this:

EVALUATION COPY: Not to be used in class.

❋

5.8. for Loops

 5.8.1. for Loop Syntax

for (initialization; conditions; change) {
statements;

}

In for loops, the initialization, conditions, and change are all placed up front and separated by
semi-colons. This makes it easy to remember to include a change statement that will eventually cause
the loop to end.

for loops are often used to iterate through arrays. The length property of an array can be used to
check how many elements the array contains. For example:

const fruit = ['Apples', 'Oranges', 'Bananas', 'Pears'];
for (let i=0; i<fruit.length; i++) {
console.log(fruit[i]);

}

116 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

And here’s the above code executed at Chrome DevTools Console:

 5.8.2. for…of Loop Syntax

for (let item of iterable) {
statement;

}

for…of loops are used to loop through any iterable object – usually arrays, but there are other types of
iterable objects as well. For example:

const fruit = ['Apples', 'Oranges', 'Bananas', 'Pears'];
for (let i of fruit) {
console.log(i);

}

And here’s the above code executed at Chrome DevTools Console:

LESSON 5: Conditionals and Loops | 117

EVALUATION COPY: Not to be used in class.

 5.8.3. for…in Loop Syntax

for (let item in object) {
statements;

}

for…in loops are used to loop through object properties. A common mistake is to use this type of loop
to iterate through arrays. Most of the time, this will work fine, but for reasons that are beyond the
scope of this course, you should avoid using for…in loops to iterate through arrays. We cover the
syntax here only because you are likely to see this type of loop used incorrectly and we want you to be
able to recognize it. If you would like to learn more why it should be avoided, see https://develop
er.mozilla.org/en-US/docs/Web/JavaScript/Guide/Loops_and_iteration#Arrays.

EVALUATION COPY: Not to be used in class.

❋

5.9. break and continue

The break statement is used to break out of a loop, usually when some condition is met.

for (let item of object) {
doSomething(item);
if (conditions) {
break;
// loop will stop executing
// and afterLoop() will run

}
}
afterLoop();

The following code illustrates how break works:

118 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Loops_and_iteration#Arrays
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Loops_and_iteration#Arrays

Notice that the Bananas and Pears do not get logged, because the loop is broken as soon as Oranges,
which contains “an” is found.

The continue statement is used to move on to the next iteration of the loop. It is used when a condition
is met that makes it unnecessary to run the rest of the code in the loop body for that iteration.

for (let item of object) {
doSomething(item);
if (conditions) {
continue;
// loop will move on to next item
// doSomethingElse() won’t be executed for this item

}
doSomethingElse(item);

}

The following code illustrates how continue works:

Notice that the Oranges and Bananas do not get logged, because both contain “an”, and when that
condition is met, the loop moves on to the next iteration.

LESSON 5: Conditionals and Loops | 119

EVALUATION COPY: Not to be used in class.

 Exercise 9: Working with Loops
 20 to 30 minutes

In this exercise, you will practice working with loops.

1. Open ConditionalsAndLoops/Exercises/loops.html for editing. You will see that this
file is similar to the solution to the challenge from the last exercise.

2. Declare an additional variable called greeting.

3. Create an array called presidents that contains the last names of four or more past presidents.

4. Currently, the user only gets two tries to enter a valid dominantHand and lastName. Modify
the code so that, in both cases, the user continues to get prompted until the data is valid.

A. For dominantHand, the first prompt should be “Are you left- or right-handed?”
Each subsequent prompt should be “Try again: right or left?”

B. For lastName, it should just continue prompting “What’s your last name?” until
the user enters a valid last name.

5. Change the switch block so that it assigns an appropriate value (e.g., “Hello Lefty Smith”)
to the greeting variable rather than popping up an alert.

6. After the switch block, write code that alerts the user by name if they have the same last
name as a president. There is no need to alert those people who have non-presidential names.

Challenge

1. For those people who do not have presidential names, pop up an alert that tells them their
names are not presidential.

120 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

LESSON 5: Conditionals and Loops | 121

EVALUATION COPY: Not to be used in class.

Solution: ConditionalsAndLoops/Solutions/loops.html

-------Lines 1 through 7 Omitted-------
<script>8.
function greetUser() {9.
let dominantHand;10.
let lastName;11.
let greeting;12.
const presidents = ["Washington", "Jefferson", "Lincoln", "Kennedy"];13.

14.
dominantHand = prompt("Are you left- or right-handed?", "") || "";15.
dominantHand = dominantHand.toLowerCase();16.
while (dominantHand !== "right" && dominantHand !== "left") {17.
dominantHand = prompt("Try again: right or left?", "") || "";18.

}19.
20.

do {21.
lastName = prompt("What's your last name?", "") || "";22.

} while (lastName.length === 023.
|| !isNaN(lastName)24.
|| lastName.substring(0, 1) === lastName.substring(0, 1).toLowerCase())25.

26.
switch (dominantHand) {27.
case "right" :28.
greeting = "Hello Righty " + lastName + "!";29.
break;30.

default : // If not right, must be left31.
greeting = "Hello Lefty " + lastName + "!";32.

}33.
34.

for (let lName of presidents) {35.
if (lName === lastName) {36.
alert(greeting + ' Your name is presidential!');37.
break; // No need to keep looking after we've found a match38.

}39.
}40.

}41.
</script>42.
-------Lines 43 through 50 Omitted-------

122 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

Challenge Solution:
ConditionalsAndLoops/Solutions/loops-challenge.html

-------Lines 1 through 34 Omitted-------
let match = false;35.
for (let lName of presidents) {36.
if (lName === lastName) {37.
alert(greeting + ' Your name is presidential!');38.
match = true;39.
break; // No need to keep looking after we've found a match40.

}41.
}42.
if (!match) {43.
alert(greeting + ' Your name is not presidential!');44.

}45.
-------Lines 46 through 55 Omitted-------

EVALUATION COPY: Not to be used in class.

❋

5.10. Array: forEach()

Another way to loop through arrays is to use the array’s built-in forEach() method.

myArray.forEach(function(item) {
doSomething(item);

});

Each item of the array is passed to the function one by one. For example:

const fruit = ['Apples', 'Oranges', 'Bananas', 'Pears'];
fruit.forEach(function(item) {
console.log(item);

});

And here’s the above code executed at Chrome DevTools Console:

LESSON 5: Conditionals and Loops | 123

EVALUATION COPY: Not to be used in class.

Conclusion

In this lesson, you learned:

To work with if-else if-else conditions.

To work with switch / case conditionals.
To work with several types of loops.

124 | LESSON 5: Conditionals and Loops

EVALUATION COPY: Not to be used in class.

LESSON 6
Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

Topics Covered

 Understanding on-event handlers.

 Commonly-used on-event handlers.

addEventListener().

 Benefits of event listeners.

Introduction

On-event handlers allow us to listen for user actions and to respond to those events with custom code.

EVALUATION COPY: Not to be used in class.

❋

6.1. On-event Handlers

On-event handlers are attributes that force an element to “listen” for a specific event to occur.

We might, for instance, listen for a user to click a specific div element, listen for a form submission,
or listen for the user to pass their mouse over any input element of a given class.

The table below lists commonly-used HTML on-event handlers with descriptions:

LESSON 6: Event Handlers and Listeners | 125

EVALUATION COPY: Not to be used in class.

HTML On-event Handlers
DescriptionOn-event Handler

The element lost the focus.onblur

The element value was changed.onchange

A pointer button was clicked.onclick

A pointer button was double-clicked.ondblclick

The element received the focus.onfocus

A key was pressed down.onkeydown

A key was pressed and released.onkeypress

A key was released.onkeyup

The document has been loaded.onload

A pointer button was pressed down.onmousedown

A pointer was moved within the element.onmousemove

A pointer was moved off of the element.onmouseout

A pointer was moved onto the element.onmouseover

A pointer button was released over the element.onmouseup

The form was reset.onreset

Some text was selected.onselect

The form was submitted.onsubmit

 6.1.1. The getElementById() Method

A very common way to reference HTML elements is by their id using the getElementById() method
of the document object as shown in the following example. Once we have the element – that is, once
we get a given div, p, input or other DOM element via the getElementById() method – we can
then listen for events on that element. Let’s look at an example:

126 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

Demo 6.1: EventHandlers/Demos/get-element-by-id.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function changeBg(id, color) {9.
document.getElementById(id).style.backgroundColor = color;10.

}11.
</script>12.
<title>getElementById()</title>13.
</head>14.
<body>15.
<main>16.
<button onclick="changeBg('divRed','red')">Red</button>17.
<button onclick="changeBg('divOrange','orange')">Orange</button>18.
<button onclick="changeBg('divGreen','green')">Green</button>19.
<button onclick="changeBg('divBlue','blue')">Blue</button>20.
<div id="divRed">Red</div>21.
<div id="divOrange">Orange</div>22.
<div id="divGreen">Green</div>23.
<div id="divBlue">Blue</div>24.

</main>25.
</body>26.
</html>27.

Clicking the buttons sets the style of the corresponding div element, whose id is gotten via a call to
getElementById() in the changeBg() function.

LESSON 6: Event Handlers and Listeners | 127

EVALUATION COPY: Not to be used in class.

 Exercise 10: Using On-event Handlers
 15 to 25 minutes

In this exercise, you will use on-event handlers to allow the user to change the background color of the
page.

1. Open EventHandlers/Exercises/color-changer.html for editing.

2. Modify the page so that…

When the “Red” button is clicked, the background color turns red.
When the “Green” button is double-clicked, the background color turns green.
When the “Orange” button is clicked down, the background color turns orange and
when the button is released (onmouseup), the background color turns white.
When the mouse hovers over the “pink” link, the background color turns pink.
When it hovers off, the background color turns white.

128 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

Exercise Code 10.1: EventHandlers/Exercises/color-changer.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<title>Color Changer</title>8.
</head>9.
<body>10.
<main>11.
<button>12.
Click to turn the page red.13.

</button>14.
<button>15.
Double-click to turn the page green.16.

</button>17.
<button>18.
Click and hold to turn the page orange.19.

</button>20.
Hover over to turn page pink.21.

</main>22.
</body>23.
</html>24.

Challenge

1. Add functionality so that when the user presses any key, the background color turns white.

LESSON 6: Event Handlers and Listeners | 129

EVALUATION COPY: Not to be used in class.

Solution: EventHandlers/Solutions/color-changer.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function changeBg(color) {9.
document.body.style.backgroundColor = color;10.

}11.
</script>12.
<title>Color Changer</title>13.
</head>14.
<body>15.
<main>16.
<button onclick="changeBg('red')">17.
Click to turn the page red.18.

</button>19.
<button ondblclick="changeBg('green')">20.
Double-click to turn the page green.21.

</button>22.
<button onmousedown="changeBg('orange')"23.
onmouseup="changeBg('white')">24.
Click and hold to turn the page orange.25.

</button>26.
<a href="#"27.
onmouseover="changeBg('pink')"28.
onmouseout="changeBg('white')">Hover over to turn page pink.29.

</main>30.
</body>31.
</html>32.

130 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

Challenge Solution:
EventHandlers/Solutions/color-changer-challenge.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function changeBg(color) {9.
document.body.style.backgroundColor = color;10.

}11.
</script>12.
<title>Color Changer</title>13.
</head>14.
<body onkeypress="changeBg('white')">15.
<main>16.
<button onclick="changeBg('red')">17.
Click to turn the page red.18.

</button>19.
<button ondblclick="changeBg('green')">20.
Double-click to turn the page green.21.

</button>22.
<button onmousedown="changeBg('orange')"23.
onmouseup="changeBg('white')">24.
Click and hold to turn the page orange.25.

</button>26.
<a href="#" onmouseover="changeBg('pink')"27.
onmouseout="changeBg('white')">Hover over to turn page pink.28.

</main>29.
</body>30.
</html>31.

EVALUATION COPY: Not to be used in class.

❋

LESSON 6: Event Handlers and Listeners | 131

EVALUATION COPY: Not to be used in class.

6.2. The addEventListener() Method

You have learned how to add event handlers using the on-event HTML attributes (e.g., onload,
onclick, etc). Now, you will learn how to add event listeners using an EventTarget’s
addEventListener() method.

An EventListener represents an object that does something when an event occurs. Think of a swimmer
on a block, waiting for the starting gun to go off. When the gun goes off, the swimmer dives. Here is
some pseudo-code to set that up in JavaScript:

diver.addEventListener('shotFire', dive);

In the pseudo-code above, diver is the EventTarget, shotFire is the event type, and dive is the
function that will be called when the event occurs. Functions that are called in response to an event
are known as callback functions.

An EventTarget is any object on which an event can occur, including window, document, and any
HTML element. The basic syntax is as follows:

object.addEventListener(eventType, callbackFunction);

We have already seen the different types of events: click, dblclick, load, mouseover, mouseout,
etc. HTML attributes used to call these events all begin with “on”, but when referencing the event type
directly, you do not include the “on” prefix. For example, the following code shows how to call the
init() function when the load event of the window object occurs:

132 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

Demo 6.2: EventHandlers/Demos/window-load.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function init(e) {9.
alert('Hello, world!');10.

}11.
window.addEventListener('load', init);12.

</script>13.
<title>window load</title>14.
</head>15.
<body>16.
<main>17.
<p>Nothing to show here.</p>18.

</main>19.
</body>20.
</html>21.

Run this in the browser and you will see the “Hello, world!” alert as soon as the page is finished loading.

Notice in the code above that init is passed to addEventListener() without the usual trailing
parentheses associated with functions. It is window.addEventListener('load', init); and not
window.addEventListener('load', init()); The reason is that we are not calling the function
at this point in the code. Rather, we are indicating that we want the function to be called when the
relevant event occurs. If you make the mistake of including the parentheses, the function will be called
immediately and the value returned from the function will be used as the callback function, probably
resulting in an error.

The table below lists common event types with descriptions. These correspond to the on-event handlers
we saw earlier.

LESSON 6: Event Handlers and Listeners | 133

EVALUATION COPY: Not to be used in class.

Event Types
DescriptionEvent Type

The element lost the focus.blur

The element value was changed.change

A pointer button was clicked.click

A pointer button was double-clicked.dblclick

The element received the focus.focus

A key was pressed down.keydown

A key was released.keyup

The document has been loaded.load

A pointer button was pressed down.mousedown

A pointer was moved within the element.mousemove

A pointer was moved off of the element.mouseout

A pointer was moved onto the element.mouseover

A pointer button was released over the element.mouseup

The form was reset.reset

Some text was selected.select

The form was submitted.submit

The Callback Function

In the example above, the callback function is init(e). You may have noticed that it takes a single
parameter, which we have called e, but the variable name is arbitrary. Common names are e and evt.
This parameter will hold the event that caused the callback function to be called. Examine the following:

134 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

Demo 6.3: EventHandlers/Demos/window-load-e.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function init(e) {9.
alert(e);10.
alert(e.currentTarget);11.
alert(e.type);12.

}13.
window.addEventListener('load', init);14.

</script>15.
<title>window load</title>16.
</head>17.
<body>18.
<main>19.
<p>Nothing to show here.</p>20.

</main>21.
</body>22.
</html>23.

This time, instead of alerting “Hello, world!”, the code alerts [object Event]:

and then alerts the currentTarget property of the event, which is the object that caused the event to
occur: [object Window]:

LESSON 6: Event Handlers and Listeners | 135

EVALUATION COPY: Not to be used in class.

Finally, it alerts the type of event: load:

Now let’s take a look at how we use this passing of the event to make a function’s response dependent
on the event that spawned it:

136 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

Demo 6.4: EventHandlers/Demos/current-target.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function changeBg(e) {9.
const color = e.currentTarget.id;10.
document.body.style.backgroundColor = color;11.

}12.
13.

function init(e) {14.
const aqua = document.getElementById('aqua');15.
const lime = document.getElementById('lime');16.
const pink = document.getElementById('pink');17.
aqua.addEventListener('click', changeBg);18.
lime.addEventListener('click', changeBg);19.
pink.addEventListener('click', changeBg);20.

}21.
window.addEventListener('load', init);22.

</script>23.
<title>window load</title>24.
</head>25.
<body>26.
<main>27.
<button id="aqua">Aqua</button>28.
<button id="lime">Lime</button>29.
<button id="pink">Pink</button>30.

</main>31.
</body>32.
</html>33.

Run this page in your browser to see how it works.

1. When the page is loaded the init() function is called. It adds event listeners to each of the
buttons, all with the same callback function: changeBg. Note that we have to add these event
listeners after the document loads to be sure that the buttons exist. That is why we do it in
the callback function of window’s load event.

LESSON 6: Event Handlers and Listeners | 137

EVALUATION COPY: Not to be used in class.

2. The callback function, changeBg(), sets the color variable to the value of the id of the
event’s currentTarget – the button that was clicked. It then changes the background color
to color.

EVALUATION COPY: Not to be used in class.

❋

6.3. Anonymous Functions

The init() function in the previous example is meant to be called once and only once – when the
page finishes loading. As such, there is no reason for it to remain available after it is run. Such functions
are often created as anonymous functions at the point in the code that they are needed. The syntax is as
follows:

object.addEventListener(eventType, function(e) {
// function code here
});

Notice the function has no name: function init(e) is replaced with function(e). It doesn’t need
a name, because it will only be referenced this one time in the code.

Here is the last page rewritten to use an anonymous function:

138 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

Demo 6.5: EventHandlers/Demos/anonymous-function.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function changeBg(e) {9.
const color = e.currentTarget.id;10.
document.body.style.backgroundColor = color;11.

}12.
13.

window.addEventListener('load', function(e) {14.
const aqua = document.getElementById('aqua');15.
const lime = document.getElementById('lime');16.
const pink = document.getElementById('pink');17.
aqua.addEventListener('click', changeBg);18.
lime.addEventListener('click', changeBg);19.
pink.addEventListener('click', changeBg);20.

});21.
</script>22.
<title>Anonymous Function</title>23.
</head>24.
<body>25.
<main>26.
<button id="aqua">Aqua</button>27.
<button id="lime">Lime</button>28.
<button id="pink">Pink</button>29.

</main>30.
</body>31.
</html>32.

Run this page in your browser and you’ll see that it works the same as it did with a named function.

Note that we could make changeBg() an anonymous function as well, but because it is called three
times, we would have to change it each place it is called. If we ever wanted to make modifications in
the future, we would have to make those modifications in all three places. So, as it is reused, it makes
more sense to give that one a name.

LESSON 6: Event Handlers and Listeners | 139

EVALUATION COPY: Not to be used in class.

EVALUATION COPY: Not to be used in class.

❋

6.4. Capturing Key Events

The two types of keyboard events are:

1. keydown – fires when a key is pressed down.

2. keyup – fires when a key is released.

keypress

You may also see the keypress event, which fires when a key is pressed and then released.
However, this event has been deprecated8 and is no longer recommended.

The target of keyboard events can be the document or any element on the page.

When capturing a keyboard event, it is common to want to know what key is pressed. This is available
via the event’s key property.

8. https://developer.mozilla.org/en-US/docs/Web/API/Element/keypress_event.

140 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

https://developer.mozilla.org/en-US/docs/Web/API/Element/keypress_event.
https://developer.mozilla.org/en-US/docs/Web/API/Element/keypress_event.

Demo 6.6: EventHandlers/Demos/keys.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
document.addEventListener('keyup', function(e) {9.
document.getElementById('keyholder').innerHTML = e.key;10.

});11.
</script>12.
<title>Key Press</title>13.
</head>14.
<body>15.
<main id="keyholder"></main>16.
</body>17.
</html>18.

Run this page in your browser and press any key to see how it works. Notice that when you press the
Enter key, the word “Enter” is output. You could use the following code to capture this on an input
field:

const myInput = document.getElementById('myInput');
myInput.addEventListener('keyup', function(e) {
if (e.key === 'Enter') {
doSomething();

}
});

innerHTML

This demo uses the innerHTML property, which you can use to read and modify the HTML
content of an element.

LESSON 6: Event Handlers and Listeners | 141

EVALUATION COPY: Not to be used in class.

 Exercise 11: Adding Event Listeners
 15 to 25 minutes

You will start with the following code:

Exercise Code 11.1: EventHandlers/Exercises/add-event-listener.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
// write changeBg function here9.

10.
function changeBgWhite(e) {11.
document.body.style.backgroundColor = 'white';12.

}13.
14.

// add your event listener here15.
</script>16.
<title>Color Changer</title>17.
</head>18.
<body>19.
<main>20.
<button id="red">21.
Click to turn the page red.22.

</button>23.
<button id="green">24.
Double-click to turn the page green.25.

</button>26.
<button id="orange">27.
Click and hold to turn the page orange.28.

</button>29.
Hover over to turn page pink.30.

</main>31.
</body>32.
</html>33.

1. Open EventHandlers/Exercises/add-event-listener.html in your editor.

142 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

2. Add an event listener to capture the load event of the window object. The callback function
should be anonymous and should do the following:

A. Create variables holding the buttons and link.

B. Add a click event to the red button that calls changeBg.

C. Add a dblclick event to the green button that calls changeBg.

D. Add a mousedown event to the orange button that calls changeBg.

E. Add a mouseup event to the orange button that calls changeBgWhite.

F. Add a mouseover event to the link that calls changeBg.

G. Add a mouseout event to the link that calls changeBgWhite.

H. Add a keyup event to the document object that calls changeBgWhite.

3. Write the changeBg() function.

Challenge

1. Change the changeBgWhite() function as follows:

function changeBgWhite(e) {
changeBg('white');

}

2. Change the changeBg() function to allow for a color value as a string as well as an event. If
an event is passed in, it should get the color from the id of the currentTarget of the event
as it does now. But if a string is passed in, it should use that string as the color value.

LESSON 6: Event Handlers and Listeners | 143

EVALUATION COPY: Not to be used in class.

Solution: EventHandlers/Solutions/add-event-listener.html

-------Lines 1 through 7 Omitted-------
<script>8.
function changeBg(e) {9.
const color = e.currentTarget.id;10.
document.body.style.backgroundColor = color;11.

}12.
13.

function changeBgWhite(e) {14.
document.body.style.backgroundColor = 'white';15.

}16.
17.

window.addEventListener('load', function() {18.
const btnRed = document.getElementById('red');19.
const btnGreen = document.getElementById('green');20.
const btnOrange = document.getElementById('orange');21.
const lnkPink = document.getElementById('pink');22.

23.
btnRed.addEventListener('click', changeBg);24.
btnGreen.addEventListener('dblclick', changeBg);25.
btnOrange.addEventListener('mousedown', changeBg);26.
btnOrange.addEventListener('mouseup', changeBgWhite);27.
lnkPink.addEventListener('mouseover', changeBg);28.
lnkPink.addEventListener('mouseout', changeBgWhite);29.

30.
document.addEventListener('keyup', changeBgWhite);31.

});32.
</script>33.
-------Lines 34 through 50 Omitted-------

Code Explanation

We need a changeBgWhite() function because we cannot key off the id value to change the background
color to white for two reasons:

1. We have added two event handlers to the btnOrange button: mousedown and mouseup. For
mouseDown, we call changeBg(), which keys off btnOrange’s id attribute (“orange”) to
change the background color to orange. For mouseup though, we want to change the
background color to white, so we cannot call changeBg() again as that sets the color to the
button’s id value. That’s why we need changeBgWhite(). The same logic applies to the
lnkPink link.

144 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

2. The document object doesn’t have an id value, so for keyup events, if we call changeBg(),
the e.currentTarget.id value would be null. That’s why we call changeBgWhite()
instead.

Challenge Solution:
EventHandlers/Solutions/add-event-listener-challenge.html

-------Lines 1 through 7 Omitted-------
<script>8.
function changeBg(colorOrEvent) {9.
let color = 'white'; // default10.
if (typeof colorOrEvent === 'string') {11.
color = colorOrEvent;12.

} else {13.
color = colorOrEvent.currentTarget.id;14.

}15.
document.body.style.backgroundColor = color;16.

}17.
18.

function changeBgWhite(e) {19.
changeBg('white');20.

}21.
-------Lines 22 through 55 Omitted-------

EVALUATION COPY: Not to be used in class.

❋

6.5. Benefits of Event Listeners

Using on-event handlers such as onclick and onmouseover is simple and straightforward, while using
event listeners requires more JavaScript to set things up, so why use event listeners?

There are at least two major benefits to using event listeners:

1. You can add multiple event listeners to the same element.

2. Your HTML and JavaScript code are decoupled, which provides for easier maintenance and
debugging.

LESSON 6: Event Handlers and Listeners | 145

EVALUATION COPY: Not to be used in class.

To illustrate, take a look at the following JavaScript file:

Demo 6.7: EventHandlers/Demos/benefits.js

function color() {1.
document.body.style.backgroundColor = 'red';2.

}3.
4.

function reset() {5.
document.body.style.backgroundColor = 'white';6.

}7.
8.

function log(e) {9.
const t = e.currentTarget;10.
console.log(t.id + ' clicked');11.

}12.
13.

window.addEventListener('load', function() {14.
const btnColor = document.getElementById('btn-color');15.
btnColor.addEventListener('click', color);16.
btnColor.addEventListener('click', log);17.

18.
const btnReset = document.getElementById('btn-reset');19.
btnReset.addEventListener('click', reset);20.
btnReset.addEventListener('click', log);21.

});22.

Notice that you don’t need to see the HTML to understand how this code will work and when it will
run.

1. The color() and reset() functions just change the background color of the page.

2. The log(e) function logs the button click. Here we just log it to the console, but in practice,
we could log it to a permanent location using Ajax, which we do not cover in this course.

3. Each button gets two event listeners: one to change the color and the other to log the event.
We couldn’t do this with an onclick tag without rewriting our JavaScript to combine the
logging with the color-changing functions.

To see how it works, open EventHandlers/Demos/event-listeners-benefits.html in Google
Chrome with the console open and click the buttons several times.

146 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

EVALUATION COPY: Not to be used in class.

❋

6.6. Timers

Timers are started and stopped with the following four methods of the window object:

1. setTimeout(function, waitTime) – waitTime is in milliseconds.

2. clearTimeout(timer)

3. setInterval(function, intervalTime) – intervalTime is in milliseconds.

4. clearInterval(interval)

Let’s take a look at how setTimeout() and clearTimeout() work first:

LESSON 6: Event Handlers and Listeners | 147

EVALUATION COPY: Not to be used in class.

Demo 6.8: EventHandlers/Demos/timer.html

-------Lines 1 through 7 Omitted-------
<script>8.
// Create global timer variable9.
let timer;10.

11.
function changeBg(e) {12.
const color = e.currentTarget.id;13.
timer = setTimeout(function() {14.
document.body.style.backgroundColor=color;15.

}, 1000);16.
}17.

18.
function stopTimer() {19.
clearTimeout(timer);20.
alert('Timer cleared!');21.

}22.
23.

window.addEventListener('load', function() {24.
btnRed = document.getElementById('red');25.
btnWhite = document.getElementById('white');26.
btnStop = document.getElementById('stop');27.

28.
btnRed.addEventListener('click', changeBg);29.
btnWhite.addEventListener('click', changeBg);30.
btnStop.addEventListener('click', stopTimer);31.

});32.
</script>33.
<title>Timer</title>34.
</head>35.
<body>36.
<main>37.
<button id="red">Change Background to Red</button>38.
<button id="white">Change Background to White</button>39.
<button id="stop">Wait! Don't do it!</button>40.

</main>41.
</body>42.
</html>43.

Things to notice:

1. We make timer a global variable so that we can access the timer object from within multiple
functions.

148 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

2. In the changeBg() function, we create the timer using setTimeout(). The first argument
of setTimeout() is the function to execute and the second argument is the number of
milliseconds to wait before executing it.

3. The stopTimer() function simply clears the timer timer using clearTimeout().

The setInterval() and clearInterval() methods work the same way. The only difference is that
the code gets executed repeatedly until the interval is cleared.

LESSON 6: Event Handlers and Listeners | 149

EVALUATION COPY: Not to be used in class.

Demo 6.9: EventHandlers/Demos/interval.html

-------Lines 1 through 7 Omitted-------
<script>8.
// Create global interval and color variables9.
let interval;10.
let color = 'white';11.

12.
function startTogglingBg() {13.
interval = setInterval(function() {14.
if (color === 'white') {15.
color = 'red';16.

} else {17.
color = 'white';18.

}19.
document.body.style.backgroundColor=color;20.

}, 500);21.
}22.

23.
function stopTogglingBg() {24.
clearInterval(interval);25.

}26.
27.

window.addEventListener('load', function() {28.
btnStart = document.getElementById('start');29.
btnStop = document.getElementById('stop');30.

31.
btnStart.addEventListener('click', startTogglingBg);32.
btnStop.addEventListener('click', stopTogglingBg);33.

});34.
</script>35.
<title>Timer</title>36.
</head>37.
<body>38.
<main>39.
<button id="start">Start</button>40.
<button id="stop">Stop</button>41.

</main>42.
</body>43.
</html>44.

Open EventHandlers/Demos/interval.html in your browser to see how it works. Click the Start
button. The background should change back and forth from red to white. Click the Stop button to
stop the changes.

150 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

 Exercise 12: Typing Test
 10 to 20 minutes

In this exercise, you will create a simple typing test.

innerHTML

This exercise uses the innerHTML property, which you can use to read and modify the HTML
content of an element.

Here is the starting code:

LESSON 6: Event Handlers and Listeners | 151

EVALUATION COPY: Not to be used in class.

Exercise Code 12.1: EventHandlers/Exercises/typing-test.html

-------Lines 1 through 7 Omitted-------
<script>8.
// Global variable containing time passed9.
let timePassed = 0;10.

11.
function checkSentence(sentence, entry) {12.
const msg = document.getElementById('message');13.
if (sentence === entry) {14.
msg.innerHTML = 'You finished in ' + timePassed + ' seconds';15.
return true;16.

}17.
timePassed += .1;18.
timePassed = parseFloat(timePassed.toFixed(1));19.
msg.innerHTML = timePassed + ' seconds';20.
return false;21.

}22.
23.

window.addEventListener('load', function() {24.
const sentence = document.getElementById('sentence').innerHTML;25.
const entryField = document.getElementById('entry');26.

27.
// Write your code here.28.

});29.
</script>30.
<title>Typing Test</title>31.
</head>32.
<body id="typing-test">33.
<main>34.
<div id="container">35.
<p id="sentence">The quick brown fox jumps over the lazy dog.</p>36.
<input id="entry" placeholder="Click to start timer.">37.
<p id="message">0 seconds</p>38.

</div>39.
</main>40.
</body>41.
</html>42.

1. Open EventHandlers/Exercises/typing-test.html in your editor.

2. Beneath the line where entryField is declared, add an event listener to entryField, so that
when the user focuses on the field, an interval is created. The interval’s function should run
every 100 milliseconds and should do the following:

152 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

Call checkSentence(), passing in the sentence and the value of entryField and
assigning the result to a variable.

A.

B. If checkSentence() returns true, clear the interval.

3. Test your solution in a browser.

LESSON 6: Event Handlers and Listeners | 153

EVALUATION COPY: Not to be used in class.

Solution: EventHandlers/Solutions/typing-test.html

-------Lines 1 through 7 Omitted-------
<script>8.
// Global variable containing time passed9.
let timePassed = 0;10.

11.
function checkSentence(sentence, entry) {12.
const msg = document.getElementById('message');13.
if (sentence === entry) {14.
msg.innerHTML = 'You finished in ' + timePassed + ' seconds';15.
return true;16.

}17.
timePassed += .1;18.
timePassed = parseFloat(timePassed.toFixed(1));19.
msg.innerHTML = timePassed + ' seconds';20.
return false;21.

}22.
23.

window.addEventListener('load', function() {24.
const sentence = document.getElementById('sentence').innerHTML;25.
const entryField = document.getElementById('entry');26.

27.
entryField.addEventListener('focus', function() {28.
const interval = setInterval(function() {29.
const result = checkSentence(sentence, entryField.value);30.
if (result) {31.
clearInterval(interval);32.

}33.
}, 100);34.

});35.
});36.

</script>37.
-------Lines 38 through 49 Omitted-------

Conclusion

In this lesson, you have learned:

How to use on-event handlers to respond to user events.

How to listen for events with the addEventListener() method and to understand the
benefits of this approach.
How to write anonymous functions.

154 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

How to create timers and intervals.

LESSON 6: Event Handlers and Listeners | 155

EVALUATION COPY: Not to be used in class.

156 | LESSON 6: Event Handlers and Listeners

EVALUATION COPY: Not to be used in class.

LESSON 7
The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

Topics Covered

 The HTML DOM.

 Accessing specific nodes.

 Accessing nodes by tag name, class name, and CSS selector.

 Accessing nodes hierarchically.

 Creating and removing nodes.

 Dynamically creating an HTML page.

Introduction

The HTML Document Object Model (DOM) is a W3C standard that defines a set of HTML objects
and their methods and properties. JavaScript can be used to access, to create, and to destroy these
objects, to invoke their methods, and to manipulate their properties.

A subset of the object hierarchy is shown below:

LESSON 7: The HTML Document Object Model | 157

EVALUATION COPY: Not to be used in class.

This lesson is concerned with the different ways of identifying and manipulating document nodes.
While we have looked at some of these features in previous lessons, we present them here together for
completeness.

EVALUATION COPY: Not to be used in class.

❋

7.1. CSS Selectors

We will start with an introduction/review of CSS selectors as we can make use of them to access elements
with JavaScript. There are several different types of selectors, including:

Type
Descendant
Child

158 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

Class
ID
Attribute
Universal

Selectors identify the element(s) affected by a CSS rule.

 7.1.1. Type Selectors

Type selectors specify elements by tag name and affect every instance of that element type. The rule
below specifies that the text of every p element should be darkgreen and use a 10-point Verdana font:

p {
color: darkgreen;
font-family: Verdana;
font-size: 10pt;

}

 7.1.2. Descendant Selectors

Descendant selectors specify elements by ancestry. Each “generation” is separated by a space. For
example, the following rule states that strong elements within p elements should have red text:

p strong {
color: red;

}

With descendant selectors generations can be skipped. In other words, the code above does not require
that the strong element is a direct child of the p element.

 7.1.3. Child Selectors

Child selectors specify a direct parent-child relationship and are indicated by placing a > sign between
the two tag names:

p > strong {
color: red;

}

LESSON 7: The HTML Document Object Model | 159

EVALUATION COPY: Not to be used in class.

In this case, only strong elements that are direct children of p elements are affected.

 7.1.4. Class Selectors

In HTML, almost all elements can take the class attribute, which assigns a class name to an element.
The names given to classes are arbitrary, but should be descriptive of the purpose of the class. In CSS,
class selectors begin with a dot. For example, the following rule specifies that any elements with the
class “warning” should be bold and red:

.warning {
font-weight: bold;
color: #f00;

}

Following are a couple of examples of elements of the “warning” class:

<h1 class="warning">WARNING</h1>
<p class="warning">Don’t go there!</p>

If the class selector is preceded by an element name, then that selector only applies to the specified type
of element. To illustrate, the following two rules indicate that h1 elements of the class “warning” will
be underlined, while p elements of the class “warning” should be bold, but will not be underlined:

h1.warning {
color: #f00;
text-decoration: underline;

}

p.warning {
color: #f00;
font-weight: bold;

}

Because both rules indicate that the color should be red (#f00), this could be rewritten as follows:

160 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

.warning {
color: #f00;

}

h1.warning {
text-decoration: underline;

}

p.warning {
font-weight: bold;

}

Note that you can assign an element any number of classes simply by separating the class names with
spaces like this:

<div class="class1 class2 class3">...

 7.1.5. ID Selectors

As with the class attribute, in HTML, almost all elements can take the id attribute, which is used
to uniquely identify an element on the page. In CSS, id selectors begin with a pound sign (#) and have
arbitrary names. The following rule will indent the element with the “main-text” id 20 pixels from
the left and right:

#main-text {
margin-left: 20px;
margin-right: 20px;

}

<div id="main-text">
This is the main text of the page...

</div>

 7.1.6. Attribute Selectors

Attribute selectors specify elements that contain a specific attribute. They can also specify the value of
that attribute.

The following selector affects all links with a target attribute:

LESSON 7: The HTML Document Object Model | 161

EVALUATION COPY: Not to be used in class.

a[target] {
color: red;

}

The following selector would only affect links whose target attribute is “_blank”:

a[target='_blank'] {
color: red;

}

Now, with that bit of CSS review out of the way, let’s move on to the HTML DOM.

EVALUATION COPY: Not to be used in class.

❋

7.2. The innerHTML Property

Most HTML elements have an innerHTML property, which can be used to access and modify the
HTML within an element.

innerHTML Illustration

Given the code:

<p>I love JavaScript.</p>

the innerHTML property of the p element would be: I love JavaScript.

Tip

You can use the innerHTML property to either get the element’s innerHTML value (as shown
above) or to set the element’s innerHTML value. More on this later in the lesson.

162 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

EVALUATION COPY: Not to be used in class.

❋

7.3. Nodes, NodeLists, and HTMLCollections

In JavaScript, you will see the words Node and NodeList used often. For the most part, you can think
of a Node as one of the following:

1. The document object.

2. An element.

3. A snippet of text within an element.

A NodeList is a list of Node elements and is similar to an array.

An HTMLCollection is very similar to a NodeList except that:

1. HTMLCollections are live, meaning that they take into account page changes. NodeLists
are static.

2. HTMLCollections can only contain element nodes; whereas NodeLists can contain any type
of Node; however, most of the time NodeLists will be lists of elements.

Don’t Worry

If the difference between Nodes and Elements and between NodeLists and HTMLCollections
seems fuzzy to you, don’t worry too much about it. For the most part, you can think of Nodes
and Elements as interchangeable and NodeLists and HTMLCollections as arrays containing
elements. It’s not until you get to pretty advanced JavaScript that you have to be able to
differentiate between these different types.

For a full technical definition of Node, see https://developer.mozilla.org/en-
US/docs/Web/API/Node.

For a full technical definition of HTMLCollection, see https://developer.mozil
la.org/en-US/docs/Web/API/HTMLCollection.

LESSON 7: The HTML Document Object Model | 163

EVALUATION COPY: Not to be used in class.

https://developer.mozilla.org/en-US/docs/Web/API/Node
https://developer.mozilla.org/en-US/docs/Web/API/Node
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection

EVALUATION COPY: Not to be used in class.

❋

7.4. Accessing Element Nodes

JavaScript provides several different ways to access elements on the page. We will look at the following
methods:

getElementById(id) – returns a single Element Node with the passed-in id or null if no
such element exists.

getElementsByClassName(className) – returns an HTMLCollection of Element Nodes
with the passed-in className.

getElementsByTagName(tagName) – returns an HTMLCollection of Element Nodes with
the passed-in tagName.

querySelectorAll(selector) – returns a NodeList of Element Nodes matching the
passed-in selector.

querySelector(selector) – returns the first Element Node matching the passed-in
selector.

 7.4.1. getElementById()

We have already seen the document.getElementById(id) method, which returns the first element
with the given id (there shouldn’t be more than one on the page!) or null if none is found. The
following example illustrates how getElementById() works:

164 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

Demo 7.1: HTMLDOM/Demos/get-element-by-id.html

-------Lines 1 through 7 Omitted-------
<script>8.
window.addEventListener('load', function() {9.
const elem = document.getElementById('beatles-list');10.
alert(elem.innerHTML);11.

});12.
</script>13.
<title>getElementById()</title>14.
</head>15.
<body>16.
<main>17.
<h1>Rockbands</h1>18.
<h2>Beatles</h2>19.
<ol id="beatles-list">20.
Paul21.
John22.
George23.
Ringo24.

25.
<h2>Rolling Stones</h2>26.
<ol id="stones-list">27.
Mick28.
Keith29.
Charlie30.
Bill31.

32.
</main>33.
</body>34.
</html>35.

When this page loads, the following alert box will pop up:

LESSON 7: The HTML Document Object Model | 165

EVALUATION COPY: Not to be used in class.

 7.4.2. getElementsByTagName()

The getElementsByTagName() method of an element node retrieves all descendant (children,
grandchildren, etc.) elements that have the specified tag name and stores them in a NodeList, which
can be treated like an array of elements. The following example illustrates how
getElementsByTagName() works:

Demo 7.2: HTMLDOM/Demos/get-elements-by-tag-name.html

-------Lines 1 through 7 Omitted-------
<script>8.
window.addEventListener('load', function() {9.
const elems = document.getElementsByTagName('li');10.
let msg = "";11.
for (let elem of elems) {12.
msg += elem.innerHTML + "\n";13.

}14.
alert(msg);15.

});16.
</script>17.
<title>getElementsByTagName()</title>18.
</head>19.
<body>20.
<main>21.
<h1>Rockbands</h1>22.
<h2>Beatles</h2>23.
24.
Paul25.
John26.
George27.
Ringo28.

29.
<h2>Rolling Stones</h2>30.
31.
Mick32.
Keith33.
Charlie34.
Bill35.

36.
</main>37.
</body>38.
</html>39.

When this page loads, the following alert box will pop up:

166 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

 7.4.3. getElementsByClassName()

The getElementsByClassName() method is applicable to all elements that can have descendant
elements. It is used to retrieve all the descendant (children, grandchildren, etc.) elements that have a
specific class name. For example, the following code would return a NodeList containing all elements
of the “warning” class:

const warnings = document.getElementsByClassName('warning');

 7.4.4. querySelectorAll() and querySelector()

We can exploit the various CSS selectors (reviewed above) by using querySelectorAll() and
querySelector(). Unlike the getElementById(), getElementsByTagName(), and
getElementsByClassName() methods, which find elements by one specific value (id, tag name, and
class name, respectively), document.querySelector() provides a way to find an element using many
different properties of the element, and querySelectorAll() provides a way to find all such elements.
For example, the following code would return a node list containing all a elements that are direct
children of td elements:

const linksInTds = document.querySelectorAll('td>a');

The document.querySelector() method is the same as document.querySelectorAll() but
rather than returning a list, it returns only the first element found. The following two lines of code
would both return the first link element found in an td element:

LESSON 7: The HTML Document Object Model | 167

EVALUATION COPY: Not to be used in class.

const firstLinkInTd = document.querySelectorAll('td>a')[0];
const firstLinkInTd = document.querySelector('td>a');

Now you have a chance to play with these methods using Chrome DevTools Console. You will start
with the following file:

Demo 7.3: HTMLDOM/Demos/getting-elements.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<title>Getting Elements</title>8.
</head>9.
<body>10.
<main>11.
<div id="board">12.
<div class="row">13.
<div class="col">A</div>14.
<div class="col">B</div>15.
<div class="col">C</div>16.

</div>17.
<div class="row">18.
<div class="col">D</div>19.
<div class="col">E</div>20.
<div class="col">F</div>21.

</div>22.
<div class="row">23.
<div class="col">G</div>24.
<div class="col">H</div>25.
<div class="col">I</div>26.

</div>27.
</div>28.

</main>29.
</body>30.
</html>31.

1. Open HTMLDOM/Demos/getting-elements.html in Google Chrome and open the console:

168 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

2. Using the console, write code to do the following:

A. Turn the background of the whole board to pink:

B. Turn the second row to lime:

LESSON 7: The HTML Document Object Model | 169

EVALUATION COPY: Not to be used in class.

C. Turn the middle cell to white:

D. Refresh the page and clear the console to start with the original board. Turn the first
column pink. There are several ways to do this. Can you figure out more than one?

170 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

E. Refresh the page and clear the console to start with the original board. Change the
content of the squares from A-I to 1-9:

3. Here are possible solutions:

A. Turn the background of the whole board to pink:

LESSON 7: The HTML Document Object Model | 171

EVALUATION COPY: Not to be used in class.

B. Turn the second row to lime:

C. Turn the middle cell to white:

D. Refresh the page and clear the console to start with the original board. Turn the first
column pink:

Three possible solutions:

172 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

E. Refresh the page and clear the console to start with the original board. Change the
content of the squares from A-I to 1-9:

LESSON 7: The HTML Document Object Model | 173

EVALUATION COPY: Not to be used in class.

 Exercise 13: Accessing Elements
 10 to 15 minutes

In this exercise, you will practice accessing elements in JavaScript.

1. Open HTMLDOM/Exercises/chessboard-table.html in your browser. It contains an 8 x
8 table:

2. Open HTMLDOM/Exercises/chessboard-table.html for editing.

3. Add JavaScript so that when the page loads, it checkers the table to look like this:

174 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

LESSON 7: The HTML Document Object Model | 175

EVALUATION COPY: Not to be used in class.

Solution: HTMLDOM/Solutions/chessboard-table.html

-------Lines 1 through 7 Omitted-------
<script>8.
window.addEventListener('load', function(e) {9.
const oddrows = document.querySelectorAll('tr.odd');10.
const evenrows = document.querySelectorAll('tr.even');11.
for (row of oddrows) {12.
const evencols = row.querySelectorAll('.even');13.
for (col of evencols) {14.
col.style.backgroundColor = 'black';15.

}16.
}17.
for (row of evenrows) {18.
const oddcols = row.querySelectorAll('.odd');19.
for (col of oddcols) {20.
col.style.backgroundColor = 'black';21.

}22.
}23.

});24.
</script>25.
-------Lines 26 through 112 Omitted-------

Code Explanation

The solution shown here is just one of many ways to do this.

EVALUATION COPY: Not to be used in class.

❋

7.5. Dot Notation and Square Bracket Notation

In the first lesson of this course, we took a look at two ways to access elements in JavaScript: dot notation
and square bracket notation. Let’s review these concepts again.

Dot notation lets us refer to hierarchical DOM elements starting with the top-most element (window)
then a set of dot-separated names, referencing elements by their name. For instance, to get an input

176 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

element with the name fname inside a form with the name loginform, we might use the following
(as long as there are no hyphens in the names):

window.document.loginform.fname

 7.5.1. Collections of Elements

A document can have multiple form elements as children. We call this the document’s forms collection.
We can reference the specific form by its order on the page. Like arrays, collections in JavaScript start
with index 0, so the first form on the page would be forms[0].

window.document.forms[0].fname

 7.5.2. window is Implicit

As window is the implicit top-level object, we don’t have to refer to it explicitly. The preceding code
samples could be written as:

document.loginform.fname
document.forms[0].fname

Similarly, we can reference objects with square bracket notation, where the key is the name of the element:

document['loginform']['fname']

This is equivalent to the dot-notation references we showed earlier and can be used interchangeably.

Let’s play with this a little in the Chrome DevTools Console using the following file:

LESSON 7: The HTML Document Object Model | 177

EVALUATION COPY: Not to be used in class.

Demo 7.4: HTMLDOM/Demos/forms.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<title>Forms</title>8.
</head>9.
<body>10.
<main>11.
<form name="form-a">12.
<input name="fname">13.

</form>14.
<form name="form-b">15.
<input name="fname">16.

</form>17.
<form name="form-c">18.
<input name="fname">19.

</form>20.
<form name="form-d">21.
<input name="fname">22.

</form>23.
</main>24.
</body>25.
</html>26.

Notice the file has four form elements named “form-a”, “form-b”, “form-c”, and “form-d”. Each
of those forms has an input element named “fname”.

1. Open HTMLDOM/Demos/forms.html in Google Chrome.

2. In the console, type document.forms; and press Enter. Then click the triangle (circled below)
to expand the collection:

178 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

Notice that you see both ways of referencing the forms, by index (0, 1, 2, and 3) and by name
(form-a, form-b, form-c, and form-d).

3. Now type document["forms"]; and press Enter and notice that you get the same result,
demonstrating that you can use dot and square-bracket notation interchangeably.

4. Now run each of the following and notice that they both deliver the first form:

A. document.forms[0];

B. document["form-a"];

5. However, if you try to access the same form using dot notation you will get an error:

This is because of the hyphen in the name. It reads this as "document.form minus a" and
errors because a is undefined. So, when using hypens in names, you should use square-bracket
notation or use another technique for getting the objects.

LESSON 7: The HTML Document Object Model | 179

EVALUATION COPY: Not to be used in class.

6. You can use either dot notation or square-bracket notation to access the “fname” input
elements, because the name doesn’t contain a hyphen:

7. E n t e r y o u r n a m e i n t h e f i r s t f o r m ’ s t e x t b o x a n d t y p e
document.forms['form-a']['fname'].value (or one of the other variations) at the
console:

8. Now use JavaScript to set the value of fname in form-b:

EVALUATION COPY: Not to be used in class.

❋

7.6. Accessing Elements Hierarchically

JavaScript provides a variety of methods and properties for accessing elements based on their hierarchical
relationship. The most common are shown in the table below:

180 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

Properties for Accessing Element Nodes
DescriptionProperty

A collection of the element’s child elements.children

A reference to an element’s first child element. The equivalent of
children[0].

firstElementChild

A reference to an element’s last child element. The equivalent of
children[children.length-1].

lastElementChild

A reference to the previous element at the same level in the document
tree.

previousElementSibling

A reference to the next element at the same level in the document tree.nextElementSibling

A reference to an element’s parent node.9parentNode

The children property returns a collection of element nodes. The other properties return a single
element node.

These properties provide a flexible way to get elements on the page, relative to their parents, siblings,
or children. We can do anything with the returned elements that we did previously when retrieving
the elements with getElementById(), querySelector() and the other methods – set the background
color, change the font style, etc.

Let’s take a look at how we might use these properties:

9. A node is an object in the document tree. Elements, attributes, and text snippets are all examples of nodes. While there are some
obscure exceptions, you can generally expect the parentNode of an element to be an element.

LESSON 7: The HTML Document Object Model | 181

EVALUATION COPY: Not to be used in class.

Demo 7.5: HTMLDOM/Demos/elem-hierarchy.html

-------Lines 1 through 7 Omitted-------
<script>8.
function modify() {9.
const list = document.getElementById('list');10.
const liFirst = list.firstElementChild;11.
liFirst.style.backgroundColor = 'pink';12.
const liLast = list.lastElementChild;13.
liLast.style.backgroundColor = 'aqua';14.
const siblingPrev = liLast.previousElementSibling;15.
siblingPrev.style.backgroundColor = 'lime';16.

17.
for (item of list.children) {18.
item.innerHTML += ' - check';19.

}20.
}21.

22.
window.addEventListener('load', function() {23.
const goBtn = document.getElementById('btn-go');24.
goBtn.addEventListener('click', modify);25.

});26.
</script>27.
<title>Element Hierarchy</title>28.
</head>29.
<body>30.
<main>31.
<button id="btn-go">Go</button>32.
<ul id="list">33.
Item 134.
Item 235.
Item 336.
Item 437.
Item 538.

39.
</main>40.
</body>41.
</html>42.

Our simple page displays a button and five unordered list items, with text “Item 1”, “Item 2”, etc.

Clicking the button calls the function modify(), which does the following:

Gets the first child of the list using firstElementChild, and sets its background to pink.

Gets the last child of the list using lastElementChild, and sets its background to aqua.

182 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

Gets the next-to-last child of the list using previousElementSibling (relative to the
already-gotten liLast), and sets its background to lime.

Loops through all the list items (children of the list) adding “ - check” to the innerHTML.

We’ll ask you to try out these properties in the next exercise.

LESSON 7: The HTML Document Object Model | 183

EVALUATION COPY: Not to be used in class.

 Exercise 14: Working with Hierarchical
Elements

 10 to 15 minutes

You will start with the code shown below:

184 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

Exercise Code 14.1: HTMLDOM/Exercises/elem-hierarchy.html

-------Lines 1 through 7 Omitted-------
<script>8.
function create() {9.
const board = document.getElementById('board');10.
const topRow = board.firstElementChild;11.
const trLeftCol = topRow.firstElementChild;12.
trLeftCol.style.backgroundColor='rgba(0, 255, 255, .5)';13.
const trCenterCol = trLeftCol.nextElementSibling;14.
trCenterCol.style.backgroundColor='rgba(102, 255, 255, .5)';15.
const trRightCol = topRow.lastElementChild;16.
trRightCol.style.backgroundColor='rgba(204, 255, 255, .5)';17.

}18.
19.

window.addEventListener('load', function() {20.
const goBtn = document.getElementById('btn-go');21.
goBtn.addEventListener('click', create);22.

});23.
-------Lines 24 through 28 Omitted-------
<button id="btn-go">Go</button>29.
<div id="board">30.
<div class="row">31.
<div class="col">A</div>32.
<div class="col">B</div>33.
<div class="col">C</div>34.

</div>35.
<div class="row">36.
<div class="col">D</div>37.
<div class="col">E</div>38.
<div class="col">F</div>39.

</div>40.
<div class="row">41.
<div class="col">G</div>42.
<div class="col">H</div>43.
<div class="col">I</div>44.

</div>45.
</div>46.

-------Lines 47 through 49 Omitted-------

LESSON 7: The HTML Document Object Model | 185

EVALUATION COPY: Not to be used in class.

rgba(R, G, B, A) Functional Notation

We are using rgba(R, G, B, A) functional notation in this exercise. R, G, and B indicate the
amount of Red, Green, and Blue in the color. A indicates the opacity level: 0 (fully transparent)
to 1 (full opacity).

In this exercise, you will practice working with JavaScript’s hierarchical elements.

1. Open HTMLDOM/Exercises/elem-hierarchy.html in the browser, click the Go button,
and notice how the background colors of the first row’s cells change:

2. Note that a click handler has been added to the button so that the function create() is called
when the user clicks the button.

3. Finish the create() function so that each cell has a different color. You can use your own
colors or the ones listed below:

A. rgba(0, 255, 255, .5)

B. rgba(102, 255, 255, .5)

C. rgba(204, 255, 255, .5)

D. rgba(255, 0, 255, .5)

E. rgba(255, 102, 255, .5)

186 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

F. rgba(255, 204, 255, .5)

G. rgba(255, 255, 0, .5)

H. rgba(255, 255, 102, .5)

I. rgba(255, 255, 204, .5)

LESSON 7: The HTML Document Object Model | 187

EVALUATION COPY: Not to be used in class.

Solution: HTMLDOM/Solutions/elem-hierarchy.html

-------Lines 1 through 7 Omitted-------
<script>8.
function create() {9.
const board = document.getElementById('board');10.
const topRow = board.firstElementChild;11.
const trLeftCol = topRow.firstElementChild;12.
trLeftCol.style.backgroundColor='rgba(0, 255, 255, .5)';13.
const trCenterCol = trLeftCol.nextElementSibling;14.
trCenterCol.style.backgroundColor='rgba(102, 255, 255, .5)';15.
const trRightCol = topRow.lastElementChild;16.
trRightCol.style.backgroundColor='rgba(204, 255, 255, .5)';17.

18.
const middleRow = topRow.nextElementSibling;19.
const mrLeftCol = middleRow.firstElementChild;20.
mrLeftCol.style.backgroundColor='rgba(255, 0, 255, .5)';21.
const mrCenterCol = mrLeftCol.nextElementSibling;22.
mrCenterCol.style.backgroundColor='rgba(255, 102, 255, .5)';23.
const mrRightCol = middleRow.lastElementChild;24.
mrRightCol.style.backgroundColor='rgba(255, 204, 255, .5)';25.

26.
const bottomRow = board.lastElementChild;27.
const brLeftCol = bottomRow.firstElementChild;28.
brLeftCol.style.backgroundColor='rgba(255, 255, 0, .5)';29.
const brCenterCol = brLeftCol.nextElementSibling;30.
brCenterCol.style.backgroundColor='rgba(255, 255, 102, .5)';31.
const brRightCol = bottomRow.lastElementChild;32.
brRightCol.style.backgroundColor='rgba(255, 255, 204, .5)';33.

}34.
35.

window.addEventListener('load', function() {36.
const goBtn = document.getElementById('btn-go');37.
goBtn.addEventListener('click', create);38.

});39.
</script>40.
-------Lines 41 through 65 Omitted-------

EVALUATION COPY: Not to be used in class.

❋

188 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

7.7. Accessing Attributes

Essentially, all standard attributes of HTML elements can be accessed as properties of the element. For
example, given the following link:

<a href="https://www.google.com"
id="google" target="_blank">Google

We can access the value of the target attribute like this:

const gLink = document.getElementById('google');
console.log(gLink.target);

Likewise, we can set the value of the target attribute using the target property:

gLink.target = "searchWin";

To test this:

1. Open HTMLDOM/Demos/attributes.html in Google Chrome.

2. Click the Google link and notice that it opens in a new window or tab.

3. Run the code above at the console:

Notice that before you set gLink.target, its value is “_blank” and after you set it, its value
is “searchWin”.

You can also access and modify attribute values using the following methods and properties:

LESSON 7: The HTML Document Object Model | 189

EVALUATION COPY: Not to be used in class.

Methods and Properties for Working with Attributes
DescriptionMethod/Property

Returns a Boolean (true/false) value indicating whether or
not the element to which the method is applied includes the
given attribute.

hasAttribute(attName)

Returns the attribute value or null if the attribute doesn’t exist.getAttribute(attName)

Adds an attribute with a value or, if the attribute already exists,
changes the value of the attribute.

setAttribute(attName,
attValue)

Removes the attribute (if it exists) from an element.removeAttribute(attName)

Property referencing the collection of an element’s attributes.attributes

EVALUATION COPY: Not to be used in class.

❋

7.8. Creating New Nodes

The document node has separate methods for creating element nodes and creating text nodes:
createElement() and createTextNode(). These methods each create a node in memory that then
has to be placed somewhere in the object hierarchy. A new node can be inserted as a child to an existing
node with that node’s appendChild() and insertBefore() methods.

Moving Nodes

You can also use the appendChild() and insertBefore() methods to move an existing node
– the node will be removed from its current location and placed at the new location (since the
same node cannot exist twice in the same document).

These methods and some others are described in the table below:

190 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

Methods for Inserting and Removing Nodes
DescriptionMethod

Takes a single parameter: the node to insert, and inserts that node after the last
child node.

appendChild()

Takes two parameters: the node to insert and the child node that it should precede.
The new child node is inserted before the referenced child node.

insertBefore()

Takes two parameters: the new node and the node to be replaced. It replaces the
old node with the new node and returns the old node.

replaceChild()

Removes an element from the Document Object Model. It does not destroy the
element, it just removes it from its parent.

remove()

EVALUATION COPY: Not to be used in class.

❋

7.9. Focusing on a Field

When you visit https://www.google.com, you will notice that the search input field gets immediate
focus, so that you can start typing your search right away:

This is accomplished using the focus() method of the input element, like this:

const searchInput = document.getElementById('search');
searchInput.focus();

It is often tied to the window’s load event, like this:

LESSON 7: The HTML Document Object Model | 191

EVALUATION COPY: Not to be used in class.

https://www.google.com

Demo 7.6: HTMLDOM/Demos/focus.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
window.addEventListener("load", function() {9.
const searchInput = document.getElementById('search');10.
searchInput.focus();11.

});12.
</script>13.
<title>Focus</title>14.
</head>15.
<body>16.
<main>17.
<form>18.
<input id="search" name="search">19.
<button>Search</button>20.

</form>21.
</main>22.
</body>23.
</html>24.

Open HTMLDOM/Demos/focus.html in your browser to see how it works.

EVALUATION COPY: Not to be used in class.

❋

7.10. Shopping List Application

Using what we have learned in this lesson, we will build the one-page shopping list application shown
below:

192 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

Open HTMLDOM/Solutions/shopping-list.html in your browser to see how the finished application
works:

1. Notice that “Page Loaded” is logged and the New Item field gets focus.

2. Add Milk by clicking the + button next to Milk under Common Items.

3. Add Lettuce by typing “Lettuce” in the New Item field and pressing the + button. Notice the
New Item field gets focus, making it easy to enter another value.

4. Add Bread by typing “Bread” in the New Item field and pressing the Enter key.

5. Try adding Bread again both by clicking the + button and using the New Item field. Both
attempts should fail silently.

6. Try pressing the + button next to an empty New Item field. It should fail silently.

7. Try entering just spaces in the New Item field and pressing the + button. It should fail silently.

8. Remove Milk by clicking the - button next to Milk under Active List.

The HTML (HTMLDOM/Exercises/shopping-list.html) and CSS (HTMLDOM/Exercises/shop
ping-list.css) have already been completed. You will build the JavaScript (HTMLDOM/Exercis
es/shopping-list.js) piece by piece.

LESSON 7: The HTML Document Object Model | 193

EVALUATION COPY: Not to be used in class.

 Exercise 15: Logging
 15 to 25 minutes

In this exercise, you will complete the log(msg) function.

1. Open HTMLDOM/Exercises/shopping-list.html in your editor. Examine the section of
the code shown below. The ordered list will contain the log. You will need to access that
ordered list and add list items to it with JavaScript.

<section id="log">
<h2>Log</h2>

</section>

2. Open HTMLDOM/Exercises/shopping-list.js in your editor.

3. In the log(msg) function, write code to:

A. Access the ordered list shown above and save it in a constant.
B. Create a new list item element and save it in a constant.
C. Get the current date and save it in a constant.

D. Set the innerHTML of the new list item to the current local time using the
toLocaleTimeString() method, followed by a colon, followed by the msg passed
to log(msg). For example, “5:53:12 PM: Page Loaded”.

E. Append the new list item to the ordered list.

4. Test your code in the browser. When the page loads, it should log “Page Loaded”. If it isn’t
working, use the console to help you debug.

194 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

LESSON 7: The HTML Document Object Model | 195

EVALUATION COPY: Not to be used in class.

Solution: HTMLDOM/Solutions/shopping-list.1.js

/* Log Messages */1.
function log(msg) {2.
// Access the ordered list and save it in a variable3.
const log = document.querySelector('section#log>ol');4.
// Create a new list item element and save it in a variable5.
const newItem = document.createElement('li');6.
// Get the current date and save it in a variable7.
const now = new Date();8.
// Set the innerHTML of the new list item9.
newItem.innerHTML = now.toLocaleTimeString() +10.
': ' + msg + '';11.

// Append the new list item to the ordered list12.
log.appendChild(newItem);13.

}14.
-------Lines 15 through 30 Omitted-------

196 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

 Exercise 16: Adding EventListeners
 25 to 40 minutes

In this exercise, you will add EventListeners in the init() function so that you can log when a new
item is added. You will not yet write the code to actually add the items. You will do that in the next
exercise.

1. Open HTMLDOM/Exercises/shopping-list.html in your editor. You will have to listen
for the following events:

A. Clicks on any button element with the class “btn-add”.

B. Clicks on the button element with the id “add-new-item”.

C. Keyup events on the input element with the id “new-item”.

2. Open HTMLDOM/Exercises/shopping-list.js in your editor if it isn’t already open.

3. Beneath the log('Page Loaded'); line, declare the following three constants:

A. btnListAdd – A collection of button elements with the class “btn-add”.

B. btnAddNewItem – The button element with the id “add-new-item”.

C. newItem – The input element with the id “new-item”.

4. Add a line of code to place focus on the newItem input, so the user can just start typing in
a new item.

5. Each button in the btnListAdd collection is coded as follows:

<button class="btn-add" name="Milk">+</button>

When the user clicks one of these buttons, your code should pass the name of that button as
the argument for product to the addToList(product) function. To do this, you will need
to loop through these buttons, adding click EventListeners to each. You will need to know
which of the buttons is clicked (e.currentTarget) so that you get the value of its name
attribute.

6. The add-new-item button is coded as follows:

<button id="add-new-item">+</button>

LESSON 7: The HTML Document Object Model | 197

EVALUATION COPY: Not to be used in class.

And the associated text field is:

<input id="new-item">

When the user clicks the “add-new-item” button, your code should:

A. Pass the value of the text field as the argument for product to the
addToList(product) function.

B. Clear the text field.
C. Place focus on the text field.

7. Finally, you need to add an EventListener for the keyup event on the “new-item” text
field. The callback function should check if the key pressed was the Enter key. If it was, it
should:

A. Pass the value of the text field as the argument for product to the
addToList(product) function.

B. Clear the text field.
C. Place focus on the text field.

8. Test your code in the browser. At this point, the shopping lists won’t change, but logging
should work when you add new items. If it isn’t working, use the console to help you debug.

198 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

LESSON 7: The HTML Document Object Model | 199

EVALUATION COPY: Not to be used in class.

Solution: HTMLDOM/Solutions/shopping-list.2.js

-------Lines 1 through 20 Omitted-------
function init() {21.
log('Page Loaded');22.
const btnListAdd = document.getElementsByClassName('btn-add');23.
const btnAddNewItem = document.getElementById('add-new-item');24.
const newItem = document.getElementById('new-item');25.
newItem.focus();26.

27.
/* Add event listeners to all common list Add buttons */28.
for (btn of btnListAdd) {29.
btn.addEventListener('click', function(e) {30.
const button = e.currentTarget;31.
const product = button.name;32.
addToList(product);33.
newItem.focus();34.

});35.
}36.

37.
/* Add event listener to New Item Add button */38.
btnAddNewItem.addEventListener('click', function() {39.
addToList(newItem.value);40.
newItem.value='';41.
newItem.focus();42.

});43.
44.

/*45.
Add event listener capturing Enter press while46.
focus is on New Item field47.

*/48.
newItem.addEventListener('keyup', function(e) {49.
if (e.key === 'Enter') {50.
addToList(newItem.value);51.
newItem.value='';52.
newItem.focus();53.

}54.
});55.

}56.
57.

window.addEventListener("load", init);58.

200 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

 Exercise 17: Adding Items to the List
 15 to 25 minutes

In this exercise, you will write the addToList() function.

1. Open HTMLDOM/Exercises/shopping-list.js in your editor if it isn’t already open.

2. Currently, the addToList() function should look like this:

function addToList(product) {
log(product + ' added.')

}

You will write your code above the log(product + ' added.') line that does the following:

A. Removes leading and trailing whitespace from the passed-in product, so that if the
user enters “ Milk ”, we store it as “Milk”.

B. Access the “active-items-list” unordered list and save it in a constant.
C. Create a new list item element and save it in a constant.
D. Set the title of the new list item element to the product name.

E. Set the innerHTML of the new list item element to the product name.
F. Append the new list item to the “active-items-list” unordered list.

3. Test your code in the browser. You should now be able to add items to list. If it isn’t working,
use the console to help you debug.

LESSON 7: The HTML Document Object Model | 201

EVALUATION COPY: Not to be used in class.

Solution: HTMLDOM/Solutions/shopping-list.3.js

-------Lines 1 through 16 Omitted-------
function addToList(product) {17.
product = product.trim();18.

19.
const activeList = document.getElementById('active-items-list');20.
const newItem = document.createElement('li');21.
newItem.title = product;22.
newItem.innerHTML = product;23.
activeList.appendChild(newItem);24.
log(product + ' added.');25.

}26.
-------Lines 27 through 65 Omitted-------

202 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

 Exercise 18: Dynamically Adding Remove
Buttons to the List Items

 15 to 25 minutes

In this exercise, you will continue to work in the addToList() function. You will add remove buttons
to the list items you created in the last exercise.

1. Open HTMLDOM/Exercises/shopping-list.js in your editor if it isn’t already open.

2. Currently, the addToList() function should look something like this:

function addToList(product) {
product = product.trim();

const activeList = document.getElementById('active-items-list');
const newItem = document.createElement('li');
newItem.title = product;
newItem.innerHTML = product;
activeList.appendChild(newItem);
log(product + ' added.')

}

You will write your code below the log(product + ' added.') line that does the following:

A. Create a button element with a minus sign that calls removeFromList() when
clicked and append it to the new list item.

B. Add a space between the product name and the new button.
C. Check if the list item being added is in the common list items. If it is, disable the

“add” button for that list item by setting its disabled property to true. Hint: Look
at the name attributes of the buttons in the “common-items-list” list. Can you use
querySelector() to find a button with the same name as the new list item you’re
adding?

Note that these directions are intentionally less specific than in the previous exercises.

3. Test your code in the browser. The list items in the ‘active-items-list’ ordered list should now
have remove buttons. They won‘t actually remove the items, but they should log “Item
removed” when clicked. Also, any item in the “common-items-list” list that is also in the
“active-items-list” should have its “add” button disabled (red and unclickable). If your code
isn’t working, use the console to help you debug.

LESSON 7: The HTML Document Object Model | 203

EVALUATION COPY: Not to be used in class.

Solution: HTMLDOM/Solutions/shopping-list.4.js

-------Lines 1 through 16 Omitted-------
function addToList(product) {17.
product = product.trim();18.

19.
const activeList = document.getElementById('active-items-list');20.
const newItem = document.createElement('li');21.
newItem.title = product;22.
newItem.innerHTML = product + ' '; // space before button23.
activeList.appendChild(newItem);24.
log(product + ' added.');25.

26.
const btnRemove = document.createElement('button');27.
btnRemove.innerHTML = '-';28.
btnRemove.addEventListener('click', removeFromList);29.
newItem.appendChild(btnRemove);30.

31.
// Check if list item being added is in common list items32.
// If it is, we need to disable its button there.33.
const selector = '#common-items-list>li>button[name="' + product + '"]';34.
const btnMatch = document.querySelector(selector);35.
if (btnMatch) {36.
btnMatch.disabled = true;37.

}38.
}39.
-------Lines 40 through 78 Omitted-------

204 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

 Exercise 19: Removing List Items
 15 to 25 minutes

In this exercise, you will write the removeFromList() function to remove elements from the
‘active-items-list’ ordered list.

1. Open HTMLDOM/Exercises/shopping-list.js in your editor if it isn’t already open.

2. Currently, the removeFromList() function should look like this:

function removeFromList(e) {
log('Item Removed');

}

A. Using the passed-in event (e), access the list item that contains the button that was
clicked to call this function and assign that list item to a constant.

B. Remove that item from the list.

C. Change log('Item Removed') to log the name of the product removed.
D. Check if the list item being removed is in the common list items. If it is, re-enable

the “add” button for that list item by setting its disabled property to false.

3. Test your code in the browser. When a remove button is clicked, the associated list item
should now get removed and the log should tell you which item was removed. In addition,
if there is an associated list item in the “common-items-list” list, its “add” button should be
re-enabled. If your code isn’t working, use the console to help you debug.

LESSON 7: The HTML Document Object Model | 205

EVALUATION COPY: Not to be used in class.

Solution: HTMLDOM/Solutions/shopping-list.5.js

-------Lines 1 through 10 Omitted-------
/* Remove item from list */11.
function removeFromList(e) {12.
const item = e.currentTarget.parentNode;13.
item.remove();14.
log(item.title + ' removed.');15.

16.
// Check if list item being removed is in common list items17.
// If it is, we need to enable its button there.18.
const selector = '#common-items-list>li>button[name="' +19.
item.title + '"]';20.

const btnMatch = document.querySelector(selector);21.
if (btnMatch) {22.
btnMatch.disabled = false;23.

}24.
}25.
-------Lines 26 through 89 Omitted-------

206 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

 Exercise 20: Preventing Duplicates and
Zero-length Product Names

 15 to 25 minutes

In this exercise, you will finalize the shopping list by preventing duplicate values and empty strings
from being added to the “active-items-list” list.

1. There are a couple of issues still. Open HTMLDOM/Exercises/shopping-list.html in your
browser.

2. Add Milk via the Common Items list and then try adding it again using the New Item form
field. Milk will be listed twice in your Active List. We’ll fix that.

3. Press the + button next to the empty New Item form field. It will add an empty item to your
Active List. We’ll fix that too.

4. Open HTMLDOM/Exercises/shopping-list.js in your editor if it isn’t already open.

5. Below the line in which you trim the product name, add code that checks if that product is
already listed in the “active-items-list” list. If it is or if the trimmed product name is an empty
string, return false so that the rest of the code in the function doesn’t run.

6. Test your code in the browser.

A. Add Milk via the Common Items list and then try adding it again using the New
Item form field. It should fail silently.

B. Press the + button next to the empty New Item form field. It should fail silently.

7. If your code isn’t working, use the console to help you debug.

LESSON 7: The HTML Document Object Model | 207

EVALUATION COPY: Not to be used in class.

Solution: HTMLDOM/Solutions/shopping-list.js

-------Lines 1 through 24 Omitted-------
/* Add product to list */25.
function addToList(product) {26.
product = product.trim();27.

28.
// Check if list item is already in active list29.
// or if product is empty string.30.
let selector = '#active-items-list>li[title="' + product + '"]';31.
const liMatch = document.querySelector(selector);32.
if (liMatch || !product.length) {33.
return false;34.

}35.
const activeList = document.getElementById('active-items-list');36.
const newItem = document.createElement('li');37.
newItem.title = product;38.
newItem.innerHTML = product + ' ';39.
activeList.appendChild(newItem);40.
log(product + ' added.');41.

42.
const btnRemove = document.createElement('button');43.
btnRemove.innerHTML = '-';44.
btnRemove.addEventListener('click', removeFromList);45.
newItem.appendChild(btnRemove);46.

47.
// Check if list item being added is in common list items48.
// If it is, we need to disable its button there.49.
selector = '#common-items-list>li>button[name="' + product + '"]';50.
const btnMatch = document.querySelector(selector);51.
if (btnMatch) {52.
btnMatch.disabled = true;53.

}54.
}55.
-------Lines 56 through 94 Omitted-------

EVALUATION COPY: Not to be used in class.

❋

208 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

7.11. Manipulating Tables

HTML tables can be created and manipulated dynamically with JavaScript. Each table, tbody, thead,
and tfoot element contains a rows array and methods for inserting and deleting rows: insertRow()
and deleteRow(). Each tr element contains a cells array and methods for inserting and deleting
cells: insertCell() and deleteCell(). The following example shows how these objects can be used
to dynamically create HTML tables.

First let’s take a look at how the page works in the browser. Open HTMLDOM/Demos/table.html in
your browser to follow along.

1. When it first loads, you see a screen like this:

2. Fill in the form and press the + sign several times:

LESSON 7: The HTML Document Object Model | 209

EVALUATION COPY: Not to be used in class.

3. Press the X next to one of the rows to delete that row:

4. Press the - next to Delete all people to remove all rows and get back to where we started:

Now let’s look at the code:

210 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

Demo 7.7: HTMLDOM/Demos/table.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function addRow(tbodyId, cells) {9.
// Get the tbody and insert a new row10.
const tbody = document.getElementById(tbodyId);11.
const newRow = tbody.insertRow();12.

13.
// Insert cells based on passed-in cells array14.
for (const cellText of cells) {15.
cell = newRow.insertCell();16.
cell.innerHTML = cellText;17.

}18.
19.

// Insert a final cell with a Delete button20.
newCell = newRow.insertCell();21.
const btnDelete = document.createElement('button');22.
btnDelete.innerHTML = 'X';23.
btnDelete.addEventListener('click', function(e) {24.
btnDelete.parentNode.parentNode.remove();25.

});26.
newCell.appendChild(btnDelete);27.

}28.
29.

function deleteAllRows(tbodyId) {30.
const tbody = document.getElementById(tbodyId);31.
while (tbody.rows.length > 0) {32.
tbody.deleteRow(0);33.

}34.
}35.

36.
function prepareCells(fName, lName) {37.
//Create a cells array to pass to the38.
const cells = [fName.value, lName.value];39.
addRow('people', cells);40.
fName.value = '';41.
lName.value = '';42.
fName.focus();43.

}44.

LESSON 7: The HTML Document Object Model | 211

EVALUATION COPY: Not to be used in class.

45.
window.addEventListener('load', function() {46.
const btnAdd = document.getElementById("btn-add");47.
const btnDeleteAll = document.getElementById("btn-delete-all");48.
const fName = document.getElementById('firstname');49.
const lName = document.getElementById('lastname');50.

51.
btnAdd.addEventListener('click', function() {52.
prepareCells(fName, lName);53.

});54.
55.

lName.addEventListener('keyup',function(e) {56.
if (e.key === 'Enter') {57.
prepareCells(fName, lName);58.

}59.
});60.

61.
btnDeleteAll.addEventListener('click', function() {62.
deleteAllRows('people');63.

});64.
65.

fName.focus();66.
});67.
</script>68.
<title>Manipulating Tables</title>69.
</head>70.
<body id="table-demo">71.
<main>72.
<table>73.
<thead>74.
<tr>75.
<th>First Name</th>76.
<th>Last Name</th>77.
<th>Admin</th>78.

</tr>79.
</thead>80.
<tbody id="people"></tbody>81.
<tbody>82.
<tr>83.
<td><input id="firstname" placeholder="First Name"></td>84.
<td><input id="lastname" placeholder="Last Name"></td>85.
<td><button type="button" id="btn-add">+</button></td>86.

</tr>87.
</tbody>88.
<tfoot>89.

212 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

<tr>90.
<th colspan="2">Delete all people:</th>91.
<td><button type="button" id="btn-delete-all">-</button></td>92.

</tr>93.
</tfoot>94.

</table>95.
</main>96.
</body>97.
</html>98.

The body of the page contains a table with a thead that contains a single row of headers:

<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Admin</th>

</tr>
</thead>

Below the thead are two tbody elements.

1. The first is empty and has an id of “people”. We will add and remove people from this tbody.

2. The second contains form elements for adding new rows:

<tr>
<td><input id="firstname" placeholder="First Name"></td>
<td><input id="lastname" placeholder="Last Name"></td>
<td><button type="button" id="btn-add">+</button></td>

</tr>

Below the tbody elements is a tfoot element with a button for deleting all rows.

The JavaScript contains two generic functions: addRow() and deleteAllRows(). By “generic”, we
mean that these functions are not tied to this application. They could be used with any table.

The addRow() function takes two parameters: the id of the tbody element to which to add the row
and an array of strings to populate the new row’s cells:

LESSON 7: The HTML Document Object Model | 213

EVALUATION COPY: Not to be used in class.

function addRow(tbodyId, cells) {
// Get the tbody and insert a new row
const tbody = document.getElementById(tbodyId);
const newRow = tbody.insertRow();

// Insert cells based on passed-in cells array
for (const cellText of cells) {
cell = newRow.insertCell();
cell.innerHTML = cellText;

}

// Insert a final cell with a Delete button
newCell = newRow.insertCell();
const btnDelete = document.createElement('button');
btnDelete.innerHTML = 'X';
btnDelete.addEventListener('click', function(e) {
btnDelete.parentNode.parentNode.remove();

});
newCell.appendChild(btnDelete);
}

Note this line of code:

btnDelete.parentNode.parentNode.remove();

The first parentNode is the cell that contains btnDelete. The second parentNode is the row that
contains that cell. That is the row that we are removing. We’ve added some styling below to make this
easier to see:

The deleteAllRows() function takes one parameter: the id of the tbody element containing the
rows to be deleted. It then uses a while loop to delete the first row over and over until there are no
rows left:

214 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

function deleteAllRows(tbodyId) {
const tbody = document.getElementById(tbodyId);
while (tbody.rows.length > 0) {
tbody.deleteRow(0);

}
}

The other JavaScript wires up the eventListeners and prepares the cells for passing data to addRow().

You may wish to practice inserting removing rows and cells using Chrome DevTools Console. Just
open the HTMLDOM/Demos/table.html file in Google Chrome, add some rows through the form,
then open the console and see if you can add and remove individual rows and cells with JavaScript.

Conclusion

In this lesson, you have learned to work with the HTML DOM to create and modify HTML page
elements dynamically with JavaScript.

LESSON 7: The HTML Document Object Model | 215

EVALUATION COPY: Not to be used in class.

216 | LESSON 7: The HTML Document Object Model

EVALUATION COPY: Not to be used in class.

LESSON 8
CSS Object Model

EVALUATION COPY: Not to be used in class.

Topics Covered

 Changing values of CSS properties dynamically.

 Hiding and showing elements.

Introduction

We can use JavaScript to both retrieve information about an element’s CSS styles and to set those styles
programmatically.

EVALUATION COPY: Not to be used in class.

❋

8.1. Changing CSS with JavaScript

Throughout this course we have used JavaScript to change background colors using the following
syntax:

element.style.backgroundColor = value;

But we can do a lot more than change the background color. We can both get and set any styles for
most any element.

Each CSS property has a corresponding property of the JavaScript style object:

If the CSS property is a simple word (e.g., color) then the JavaScript property is the same
(e.g., style.color).

LESSON 8: CSS Object Model | 217

EVALUATION COPY: Not to be used in class.

If the CSS property has a dash in it (e.g., background-color) then the JavaScript property
uses lower camel case (e.g., style.backgroundColor).

The style object is a collection of an element’s styles that are either defined within that HTML
element’s style attribute or directly in JavaScript. Styles defined in the <style> tag or in an external
stylesheet are not part of the style object.

The W3C specifies a method for getting at the current (or actual) style of an object: the window object’s
getComputedStyle() method.

window.getComputedStyle(element)

Note that the reference to window can be excluded as window is the implicit object. For example:

const contactForm = document.getElementById("contact-form");
const computedStyle = getComputedStyle(contactForm);

Using this method - with getComputedStyle(), as opposed to element.style - we can get the
styles set with inline CSS (i.e., within style attributes), with embedded CSS (i.e., within <style>
tags), or with external (i.e., linked) stylesheets. Furthermore, as the name of the method
getComputedStyle() suggests, these are computed (calculated) styles: whereas element.style just
gives us style info as set in CSS, getComputedStyle() gives us the real-time calculated CSS.

Let’s take a look at a simple example to make this more clear.

218 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

Demo 8.1: CSSObjectModel/Demos/board.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<style>8.
div#board {9.
margin:auto;10.
width:306px;11.

}12.
13.

div.row {14.
height:100px;15.

}16.
17.

div.col {18.
border:1px solid black;19.
float:left;20.
font-size:xx-large;21.
height:100px;22.
text-align:center;23.
width:100px;24.

}25.
</style>26.
<title>Board</title>27.
</head>28.
<body>29.
<main>30.
<div id="board" style="font-style:italic;">31.
<div class="row">32.
<div class="col">A</div>33.
<div class="col">B</div>34.
<div class="col">C</div>35.

</div>36.
<div class="row">37.
<div class="col">D</div>38.
<div class="col">E</div>39.
<div class="col">F</div>40.

</div>41.
<div class="row">42.
<div class="col">G</div>43.
<div class="col">H</div>44.

LESSON 8: CSS Object Model | 219

EVALUATION COPY: Not to be used in class.

<div class="col">I</div>45.
</div>46.

</div>47.
</main>48.
</body>49.
</html>50.

Things to notice:

1. We have explicitly set the font-style of div#board to “italic” using its style attribute.

2. We have explicitly set the width of div#board to “306px” using an embedded stylesheet.

3. We have not set the height of div#board.

With that file open, do the following at Chrome DevTools Console:

1. Type const board = document.getElementById('board'); and press Enter.

2. Type board.style.fontStyle and press Enter. Notice that it outputs “italic”. That’s
because we set the font-style using the style attribute. An element’s style property in
JavaScript only has access to properties set using the style attribute.

3. Type board.style.width and press Enter. Notice that it returns an empty string. That’s
because we set the width outside of the style attribute.

4. Type board.style.height and press Enter. Notice that it again returns an empty string.
That’s because we haven’t set the height in the style attribute, or anywhere else for that
matter.

Here is a screenshot showing those results:

Now let’s use getComputedStyle() instead.

220 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

1. Type const board = document.getElementById('board'); and press Enter.

2. Type const boardStyles = getComputedStyle(board); and press Enter.

3. Type the following and notice it outputs the computed value each time:

A. boardStyles.fontStyle and press Enter.

B. boardStyles.width and press Enter.

C. boardStyles.height and press Enter.

Here is a screenshot showing those results:

 8.1.1. The style Property vs. getComputedStyle()

The takeaway from all this is:

Use getComputedStyle(elem) to get the style of an element.

Use elem.style to set the style of an element.

Dot Notation vs. Square Bracket Notation

It is common to use dot notation whenever possible, and in the examples above, we have done
so. However, it is worth noting that you can also use square bracket notation. For example, the
two statements below are equivalent:

getComputedStyle(board).fontStyle;
getComputedStyle(board)['fontStyle'];

As we will see later, when the name of the style property is stored in a variable, you can only
use square bracket notation. For example:

LESSON 8: CSS Object Model | 221

EVALUATION COPY: Not to be used in class.

const styleProp = 'fontStyle';
// The Correct Way
getComputedStyle(board)[styleProp];

// Incorrect as styleProp is undefined in getComputedStyle(board)
getComputedStyle(board).styleProp;

EVALUATION COPY: Not to be used in class.

❋

8.2. Hiding and Showing Elements

Elements can be hidden and shown by changing their visibility or display values.

The visibility property can be set to "visible" or "hidden" and the display property can be
set to "block", "table-row", "list-item", "none", and many other values.

When an element’s visibility is set to "hidden", it disappears, but it continues to occupy its space.
In the following table, the second row’s visibility is set to "hidden":

When an element’s display is set to "none", it disappears, and it no longer occupies any space on
the page. In the following table, the second row’s display is set to "none":

222 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

Take a look at the code in the file below, which shows two different ways of showing and hiding table
rows:

LESSON 8: CSS Object Model | 223

EVALUATION COPY: Not to be used in class.

Demo 8.2: CSSObjectModel/Demos/visibility.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function toggleVisibility(e) {9.
const button = e.currentTarget;10.
const elem = document.getElementById(button.title);11.
if (getComputedStyle(elem).visibility === "visible") {12.
elem.style.visibility = "hidden";13.

} else {14.
elem.style.visibility = "visible";15.

}16.
const computedStyle = getComputedStyle(elem);17.
msg(button.title, 'visibility', computedStyle.visibility);18.

}19.
20.

function toggleDisplay(e) {21.
const button = e.currentTarget;22.
const elem = document.getElementById(button.title);23.
if (elem.style.display === "none") {24.
elem.style.display = "table-row";25.

} else {26.
elem.style.display = "none";27.

}28.
const computedStyle = getComputedStyle(elem);29.
msg(button.title, 'display', computedStyle.display);30.

}31.
32.

function msg(elemId, styleProp, styleValue) {33.
document.getElementById("msg").style.display = "block";34.
document.getElementById("elemId").innerHTML = elemId;35.
document.getElementById("styleProp").innerHTML = styleProp;36.
document.getElementById("styleValue").innerHTML = styleValue;37.

}38.
39.

window.addEventListener('load', function() {40.
const btnsVisibility = document.getElementsByClassName('visibility');41.
for (button of btnsVisibility) {42.
button.addEventListener('click', toggleVisibility);43.

}44.

224 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

45.
const btnsDisplay = document.getElementsByClassName('display');46.
for (button of btnsDisplay) {47.
button.addEventListener('click', toggleDisplay);48.

}49.
})50.
</script>51.
<title>Showing and Hiding Elements with JavaScript</title>52.
</head>53.
<body>54.
<main>55.
<h1>Hiding and Showing Elements</h1>56.
<table>57.
<caption id="msg">58.
 <em id="styleProp">59.
made 60.

</caption>61.
<tr id="tr1"><td>Row 1</td></tr>62.
<tr id="tr2"><td>Row 2</td></tr>63.
<tr id="tr3"><td>Row 3</td></tr>64.
<tr id="tr4"><td>Row 4</td></tr>65.

</table>66.
67.

<h2>visibility</h2>68.
<button title="tr1" class="visibility">Row 1</button>69.
<button title="tr2" class="visibility">Row 2</button>70.
<button title="tr3" class="visibility">Row 3</button>71.
<button title="tr4" class="visibility">Row 4</button>72.

73.
<h2>display</h2>74.
<button title="tr1" class="display">Row 1</button>75.
<button title="tr2" class="display">Row 2</button>76.
<button title="tr3" class="display">Row 3</button>77.
<button title="tr4" class="display">Row 4</button>78.

</main>79.
</body>80.
</html>81.

This page has two functions for changing whether a table row appears: toggleVisibility() and
toggleDisplay().

1. The toggleVisibility() function checks the computed value of the visibility property
of a table row. If it is "visible", it sets it to "hidden". Otherwise, it sets it to "visible".

LESSON 8: CSS Object Model | 225

EVALUATION COPY: Not to be used in class.

2. The toggleDisplay() function checks the computed value of the display property of a
table row. If it is "none", it sets it to "table-row". Otherwise, it sets it to "none".

EVALUATION COPY: Not to be used in class.

❋

8.3. Checking and Changing Other Style Properties

You can check and change other style properties in the same way we have done with display and
visibility. For many properties, you can change styles using this function:

function changeStyle(elem, styleProp, styleValue) {
elem.style[styleProp] = styleValue; // set style
return getComputedStyle(elem)[styleProp]; // return new style

}

There may be no need to return the new style, but it might be interesting in case you want to log it
from the calling code.

Here are some sample calls to changeStyle() to change the h1 element of a page. Open CSSObject
Model/Demos/visibility.html in Google Chrome and try this yourself:

226 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

We have created a page to allow you to practice calling the changeStyle() function.

Demo 8.3: CSSObjectModel/Demos/changing-styles-simple.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function changeStyle(elem, styleProp, styleValue) {9.
elem.style[styleProp] = styleValue; // set style10.
return getComputedStyle(elem)[styleProp]; // return new style11.

}12.
</script>13.
<title>Changing Styles</title>14.
</head>15.
<body id="changing-styles">16.
<main>17.
<p id="hello-world">Hello, World!</p>18.

</main>19.
</body>20.
</html>21.

LESSON 8: CSS Object Model | 227

EVALUATION COPY: Not to be used in class.

1. Open CSSObjectModel/Demos/changing-styles-simple.html in your browser and
open the console.

2. Enter the following to assign the first paragraph to a variable:

const firstP = document.querySelector('p');

3. See if you can use the changeStyle() function to change some of the first paragraph’s styles.

Here’s how we did it:

EVALUATION COPY: Not to be used in class.

❋

8.4. Increasing and Decreasing Measurements

1. Open CSSObjectModel/Demos/changing-styles-simple.html in your browser if it’s
not already open.

228 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

2. Enter the following at the console:

const firstP = document.querySelector('p');
getComputedStyle(firstP).width;

3. Notice that the value returned ends in “px” (e.g., “300px”).

Values for margin, padding, height, width, fontSize and other properties are strings and often
include the unit (e.g., “px”). If you want to increment or decrement these values, you first have to
extract the number from the style value and then, after doing the math, add back the unit. For example,
let’s say you want to increase the font size of a paragraph by two pixels. The steps to do that would be:

1. Get the current font size. Let’s say it is 20 pixels. That will be returned as “20px”.

2. Use parseInt() to extract the number from that and turn it into an integer.

3. Add 2 to the result.

4. Use String() to change the number back to a string and append “px” to the end.

The following example shows how to do this with the fontSize property.

LESSON 8: CSS Object Model | 229

EVALUATION COPY: Not to be used in class.

Demo 8.4: CSSObjectModel/Demos/changing-font-size.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.

function changeFontSize(elem, change) {9.
// Use parseInt to remove the unit and return an integer10.
const curFontSize = parseInt(getComputedStyle(elem).fontSize);11.

12.
// Add change to curFontSize to get newFontSize13.
const newFontSize = curFontSize + change;14.

15.
// Set the fontSize by converting newFontSize16.
// to a string and appending unit17.
elem.style.fontSize = String(newFontSize) + 'px';18.
return getComputedStyle(elem).fontSize;19.

}20.
21.

window.addEventListener('load', function() {22.
const p = document.getElementById('hello-world');23.
const btnIncrease = document.getElementById('increase');24.
const btnDecrease = document.getElementById('decrease');25.

26.
btnIncrease.addEventListener('click', function() {27.
// Increase font size by 1 unit28.
const fontSize = changeFontSize(p, 1);29.
console.log(fontSize);30.

});31.
32.

btnDecrease.addEventListener('click', function() {33.
// Decrease font size by 1 unit34.
const fontSize = changeFontSize(p, -1);35.
console.log(fontSize);36.

});37.
})38.

</script>39.
<title>Changing Font Size</title>40.
</head>41.
<body id="changing-styles">42.
<main>43.
<label>Change Font:</label>44.

230 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

<button id="increase">↑</button>45.
<button id="decrease">↓</button>46.
<p id="hello-world">Hello, World!</p>47.

</main>48.
</body>49.
</html>50.

After hitting the up arrow a bunch of times, the page will look like this:

 8.4.1. Making changeFontSize() More Flexible

Currently, the changeFontSize() function only works for incrementing and decrementing the font
size. The following code makes it more flexible, so that it will work with incrementing or decrementing
any property value that is set in pixels:

function changeStyleWithPx(elem, styleProp, change) {
const curStyleValue = parseInt(getComputedStyle(elem)[styleProp]);
const newStyleValue = curStyleValue + change;
elem.style[styleProp] = String(newStyleValue) + 'px';
console.log(styleProp + ': ' + elem.style[styleProp]);

}

Two things to notice:

1. The function now includes a styleProp parameter to take the style property being changed.

LESSON 8: CSS Object Model | 231

EVALUATION COPY: Not to be used in class.

2. We use square-bracket notation rather than dot notation for the style properties. For example,
instead of getComputedStyle(elem).styleProp, we use
getComputedStyle(elem)[styleProp]. That is because styleProp is not a property of
getComputedStyle(elem), but rather a variable holding a string. If we pass 'fontStyle'
as the styleProp, getComputedStyle(elem)[styleProp] gets interpreted as
getComputedStyle(elem)['fontStyle'] . The code
getComputedStyle(elem).styleProp would return undefined because, again, styleProp
is not a property of getComputedStyle(elem).

EVALUATION COPY: Not to be used in class.

❋

8.5. Custom data Attributes

HTML tags can take custom data attributes that take the form of data-attribute-name. These attributes
are used to provide additional information about an element and are available through the special
dataset property of element nodes. To illustrate, let’s look at an example we saw earlier in the course:

Demo 8.5: CSSObjectModel/Demos/add-event-listener.html

-------Lines 1 through 7 Omitted-------
<script>8.
function changeBg(colorOrEvent) {9.
let color = 'white'; // default10.
if (typeof colorOrEvent === 'string') {11.
color = colorOrEvent;12.

} else {13.
color = colorOrEvent.currentTarget.id;14.

}15.
document.body.style.backgroundColor = color;16.

}17.
18.

function changeBgWhite(e) {19.
changeBg('white');20.

}21.
-------Lines 22 through 55 Omitted-------

232 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

Notice that we key off the id values to set the background color. That’s not a great way to handle this
as the id value should not be tied to any specific functionality.

Take a look at the following, which solves this problem using custom data attributes:

Demo 8.6: CSSObjectModel/Demos/add-event-listener-improved.html

-------Lines 1 through 8 Omitted-------
function changeBg(e) {9.
const eventType = e.type;10.
const target = e.currentTarget;11.
switch(eventType) {12.
case 'click':13.
case 'dblclick':14.
case 'mousedown':15.
case 'mouseover':16.
color = target.dataset.activeColor;17.
break;18.

case 'mouseup':19.
case 'mouseout':20.
color = target.dataset.inactiveColor;21.
break;22.

default:23.
color = 'white';24.

}25.
document.body.style.backgroundColor = color;26.

}27.
-------Lines 28 through 47 Omitted-------
<main>48.
<button id="btn-red" data-active-color="red">49.
Click to turn the page red.50.

</button>51.
<button id="btn-green" data-active-color="green">52.
Double-click to turn the page green.53.

</button>54.
<button id="btn-orange" data-active-color="orange"55.
data-inactive-color="white">56.
Click and hold to turn the page orange.57.

</button>58.
<a href="#" id="link-pink" data-active-color="pink"59.
data-inactive-color="white">Hover over to turn page pink.60.

</main>61.
-------Lines 62 through 63 Omitted-------

Things to notice:

LESSON 8: CSS Object Model | 233

EVALUATION COPY: Not to be used in class.

1. We have given the id attributes new values.

2. We have added new data-active-color and data-inactive-color attributes to the
controls.

3. The changeBg() function now gets the event type from the passed-in event and keys off of
it to decide whether to use the activeColor value (click, dblclick, mousedown, and
mouseover) or to use the inactiveColor value (mouseout and mouseup). For all other
event types (e.g., keyup), it sets color to ‘white.’

4. This switch-case statement might look a little funny to you as it appears that nothing happens
for many of the cases (e.g., ‘click’, and ‘dblclick’). Remember that cases continue to be evaluated
until a break statement is reached, so color = target.dataset.activeColor; runs for
all of the first four cases:

case 'click':
case 'dblclick':
case 'mousedown':
case 'mouseover':
color = target.dataset.activeColor;
break;

Review the following code to see some of these concepts used in practice. Be sure to open CSSObject
Model/Demos/changing-styles.html in the browser and play around.

234 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

Demo 8.7: CSSObjectModel/Demos/changing-styles.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function changeStyle(elem, styleProp, styleValue) {9.
elem.style[styleProp] = styleValue;10.
console.log(styleProp + ': ' + elem.style[styleProp]);11.

}12.
13.

function changeStyleWithPx(elem, styleProp, change) {14.
const curStyleValue = parseInt(getComputedStyle(elem)[styleProp]);15.
const newStyleValue = curStyleValue + change;16.
elem.style[styleProp] = String(newStyleValue) + 'px';17.
console.log(styleProp + ': ' + elem.style[styleProp]);18.

}19.
20.

window.addEventListener('load', function() {21.
const p = document.getElementById('hello-world');22.
let selector;23.

24.
selector = 'button[data-font-style]';25.
const bsFtStyle = document.querySelectorAll(selector);26.
for (btn of bsFtStyle) {27.
btn.addEventListener('click', function(e) {28.
const fontStyle = e.currentTarget.dataset.fontStyle;29.
changeStyle(p, 'fontStyle', fontStyle);30.

});31.
}32.

33.
selector = 'button[data-font-size]';34.
const bsFtSize = document.querySelectorAll(selector);35.
for (btn of bsFtSize) {36.
btn.addEventListener('click', function(e) {37.
const fontSize = e.currentTarget.dataset.fontSize;38.
changeStyle(p, 'fontSize', fontSize);39.

});40.
}41.

42.
selector = 'button[data-border-style]';43.
const bsBrdStyle = document.querySelectorAll(selector);44.

LESSON 8: CSS Object Model | 235

EVALUATION COPY: Not to be used in class.

for (btn of bsBrdStyle) {45.
btn.addEventListener('click', function(e) {46.
const borderStyle = e.currentTarget.dataset.borderStyle;47.
changeStyle(p, 'borderStyle', borderStyle);48.

});49.
}50.

51.
selector = 'button[data-padding]';52.
const bsPadding = document.querySelectorAll(selector);53.
for (btn of bsPadding) {54.
btn.addEventListener('click', function(e) {55.
const target = e.currentTarget;56.
// Use ternary operator to assign change value57.
const change = target.dataset.padding==='increase' ? 10 : -10;58.
changeStyleWithPx(p, 'padding', change);59.

});60.
}61.

62.
selector ='button[data-margin]';63.
const bsMargin = document.querySelectorAll(selector);64.
for (btn of bsMargin) {65.
btn.addEventListener('click', function(e) {66.
const target = e.currentTarget;67.
// Use ternary operator to assign change value68.
const change = target.dataset.margin==='increase' ? 10 : -10;69.
changeStyleWithPx(p, 'margin', change);70.

});71.
}72.

});73.
</script>74.
<title>Changing Styles</title>75.
</head>76.
<body id="changing-styles">77.
<main>78.
<div>79.
<label>fontStyle:</label>80.
<button class="font-style italic" data-font-style="italic">Italic</button>81.
<button class="font-style normal" data-font-style="normal">Normal</button>82.

</div>83.
<div>84.
<label>fontSize:</label>85.
<button class="font-size xx-small" data-font-size="xx-small">A</button>86.
<button class="font-size x-small" data-font-size="x-small">A</button>87.
<button class="font-size small" data-font-size="small">A</button>88.
<button class="font-size medium" data-font-size="medium">A</button>89.

236 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

<button class="font-size large" data-font-size="large">A</button>90.
<button class="font-size x-large" data-font-size="x-large">A</button>91.
<button class="font-size xx-large" data-font-size="xx-large">A</button>92.

</div>93.
<div>94.
<label>borderStyle:</label>95.
<button class="border-style none" data-border-style="none">none</button>96.
<button class="border-style dotted" data-border-style="dotted">dotted</button>97.
<button class="border-style dashed" data-border-style="dashed">dashed</button>98.
<button class="border-style solid" data-border-style="solid">solid</button>99.

</div>100.
<div>101.
<label>padding:</label>102.
<button class="padding increase" data-padding="increase">Increase</button>103.
<button class="padding decrease" data-padding="decrease">Decrease</button>104.

</div>105.
<div>106.
<label>margin:</label>107.
<button class="margin increase" data-margin="increase">Increase</button>108.
<button class="margin decrease" data-margin="decrease">Decrease</button>109.

</div>110.
<p id="hello-world">Hello, World!</p>111.

</main>112.
</body>113.
</html>114.

EVALUATION COPY: Not to be used in class.

❋

8.6. Gotcha with fontWeight

These days, the most popular browsers tend to be very much in sync with their support and
implementation of CSS and JavaScript; however, Google Chrome and Safari return different values
when reading the computed fontWeight style property.

Chrome returns the weight as a number: “400” for “normal” and “700” for “bold”.
Safari returns the weight as a keyword: “normal” and “bold”.

The following two screenshots illustrate this:

LESSON 8: CSS Object Model | 237

EVALUATION COPY: Not to be used in class.

fontWeight in Google Chrome

fontWeight in Safari

As a result, when checking to see if an element is bold or not, you need to write code that checks both
possibilities. The following demo shows a function for handling this:

238 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

Demo 8.8: CSSObjectModel/Demos/changing-font-weight.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.

function toggleBold(elem) {9.
const weight = getComputedStyle(elem).fontWeight;10.
console.log("Old weight: " + weight);11.
if (weight === 'bold' || weight > 400) {12.
elem.style.fontWeight = "normal";13.

} else {14.
elem.style.fontWeight = "bold";15.

}16.
console.log("New weight: " + getComputedStyle(elem).fontWeight);17.

}18.
19.

window.addEventListener('load', function() {20.
const p = document.getElementById('hello-world');21.
const btn = document.getElementById('font-weight');22.
btn.addEventListener('click', function() {23.
toggleBold(p);24.

});25.
});26.

</script>27.
<title>Changing Font Weight</title>28.
</head>29.
<body id="changing-styles">30.
<main>31.
<label>Change Font Weight:</label>32.
<button id="font-weight">Toggle Font Weight</button>33.
<p id="hello-world">Hello, World!</p>34.

</main>35.
</body>36.
</html>37.

EVALUATION COPY: Not to be used in class.

❋

LESSON 8: CSS Object Model | 239

EVALUATION COPY: Not to be used in class.

8.7. Font Awesome

Font Awesome10 provides a collection of free vector icons that you can use on your websites. You can
get access to these icons through a free content delivery network (CDN). To do so, you will need get
your own unique <script> tag with the latest version of Font Awesome:

1. Go to https://fontawesome.com/start.

2. Enter your email address in the form and submit. You will be sent an email asking you to
confirm your email address and create an account. After creating an account, you will be
provided with a <script> tag that looks something like this:

<script src="https://kit.fontawesome.com/yoursecretcode.js"
crossorigin="anonymous"></script>

3. Paste this tag into the head of your HTML. At that point, that page will be able to use Font
Awesome icons.

 8.7.1. Finding and Using Icons

To find Font Awesome icons:

1. Use the search feature at https://fontawesome.com/icons:

10. https://fontawesome.com

240 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

https://fontawesome.com
https://fontawesome.com/start
https://fontawesome.com/icons
https://fontawesome.com

2. Click the icon you want to use.

3. Find the HTML code snippet on the icon page and copy it by clicking the clipboard icon:

4. Then paste that code snippet wherever you want the icon to show up.

Below is a page containing several Font Awesome icons:

Demo 8.9: CSSObjectModel/Demos/font-awesome.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script src="https://kit.fontawesome.com/13fbe82898.js"8.
crossorigin="anonymous"></script>9.

<title>Font Awesome</title>10.
</head>11.
<body id="font-awesome">12.
<main>13.
<i class="fas fa-phone"></i>14.
<i class="fas fa-envelope-square"></i>15.
<i class="fas fa-search"></i>16.
<i class="fab fa-grunt"></i>17.
<i class="fab fa-facebook"></i>18.
<i class="fas fa-chevron-up"></i>19.
<i class="fas fa-chevron-down"></i>20.

</main>21.
</body>22.
</html>23.

The icons on this page are shown below:

Open CSSObjectModel/Demos/font-awesome.html in your browser to see the web page.

LESSON 8: CSS Object Model | 241

EVALUATION COPY: Not to be used in class.

EVALUATION COPY: Not to be used in class.

❋

8.8. classList Property

The classList property of an element returns a list of the classes the element contains. This list can
be modified using the following methods:

classList Methods
DescriptionMethod

Adds className class.add(className)

Removes className class. Note that this doesn’t error if the
element doesn’t contain the className class.

remove(className)

If element contains the className class, it removes it. If it
doesn’t contain the className class, it adds it.

toggle(className)

Returns true if the element contains the className class.
Otherwise, returns false.

contains(className)

Replaces oldClass with newClass.replace(oldClass, newClass)

242 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

 Exercise 21: Showing and Hiding Elements
 20 to 30 minutes

Google search has a “People also ask” feature that shows a list of questions similar to your search. When
you click one of the questions the beginning of the answer shows up below it:

In this exercise, you will start with a list of questions with the answers hidden as shown below:

When the user clicks one of the questions, the answer will appear:

LESSON 8: CSS Object Model | 243

EVALUATION COPY: Not to be used in class.

The starting code is shown below.

244 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

Exercise Code 21.1: CSSObjectModel/Exercises/people-also-ask.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link href="../styles.css" rel="stylesheet">6.
<link rel="stylesheet" href="https://use.fontawesome.com/releas ↵↵

es/v5.3.1/css/all.css"
7.

 integrity="sha384-mzrmE5qonljUremF ↵↵
sqc01SB46JvROS7bZs3IO2EmfFsd15uHvIt+Y8vEf7N7fWAU"

8.

crossorigin="anonymous">9.
<script>10.
function toggleDisplay(elem) {11.
// Toggle the display of elem between "block" and "none".12.

}13.
14.

function toggleAnswer(e) {15.
/*16.
Get the question div that was clicked17.
and use it to then get the answer div.18.
Send the answer div to toggleDisplay().19.
Toggle the class of the chevron i element20.
between 'fa-chevron-down' and 'fa-chevron-up'.21.

*/22.
}23.

24.
window.addEventListener('load', function(e) {25.
const questions = document.querySelectorAll('.question');26.
for (question of questions) {27.
question.addEventListener('click', toggleAnswer);28.

}29.
});30.

</script>31.
<title>People Also Ask</title>32.
</head>33.
<body id="people-also-ask">34.
<main>35.
<h1>People also ask</h1>36.
<ul id="questions">37.
38.
<div class="question">39.
How do I enable JavaScript Chrome?40.
<i class="fas fa-chevron-down chevron"></i>41.

</div>42.

LESSON 8: CSS Object Model | 245

EVALUATION COPY: Not to be used in class.

<div class="answer">43.
<p>If you'd like to turn JavaScript44.

off or on for all sites:</p>45.
46.
Click the Chrome menu in the top right-hand47.

corner of your browser.48.
Select Settings.49.
Click Show advanced settings.50.
Under the "Privacy" section,51.

click the Content settings button.52.
53.

</div>54.
55.

-------Lines 56 through 104 Omitted-------
105.

</main>106.
</body>107.
</html>108.

1. Open CSSObjectModel/Exercises/people-also-ask.html for editing.

2. Write the code for the toggleDisplay() function so that it toggles the value of the display
property of the passed-in element between "block" and "none".

3. Write the code for the toggleAnswer() function so that it:

A. Gets the question div that was clicked and uses it to then get the answer div. Hint:
You may want to review Accessing Elements Hierarchically (see page 180).

B. Sends the answer div to toggleDisplay().

C. Toggles the class of the chevron i element between "fa-chevron-down" and
"fa-chevron-up". You should use one or more of the methods for classList.

4. Test your solution in a browser.

Challenge

1. When a question is opened, make the question bold:

246 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

2. When a question is closed, meaning that’s it already been opened and presumably the answer
has been seen, change the opacity of the question to .5:

LESSON 8: CSS Object Model | 247

EVALUATION COPY: Not to be used in class.

Solution: CSSObjectModel/Solutions/people-also-ask.html

-------Lines 1 through 8 Omitted-------
<script>9.
function toggleDisplay(elem) {10.
if (getComputedStyle(elem).display === "none") {11.
elem.style.display = "block";12.

} else {13.
elem.style.display = "none";14.

}15.
}16.

17.
function toggleAnswer(e) {18.
const question = e.currentTarget;19.
const answer = question.nextElementSibling;20.
toggleDisplay(answer);21.
const chevron = question.querySelector('.chevron');22.
chevron.classList.toggle('fa-chevron-down');23.
chevron.classList.toggle('fa-chevron-up');24.

}25.
26.

window.addEventListener('load', function(e) {27.
const questions = document.querySelectorAll('.question');28.
for (question of questions) {29.
question.addEventListener('click', toggleAnswer);30.

}31.
});32.

</script>33.
-------Lines 34 through 110 Omitted-------

248 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

Challenge Solution:
CSSObjectModel/Solutions/people-also-ask-challenge.html

-------Lines 1 through 18 Omitted-------
const weight = getComputedStyle(elem).fontWeight;19.
if (weight === 'bold' || weight > 400) {20.
elem.style.fontWeight = "normal";21.
markRead(elem);22.

} else {23.
elem.style.fontWeight = "bold";24.

}25.
}26.

27.
function markRead(elem) {28.
elem.style.opacity = .5;29.

}30.
31.

function toggleAnswer(e) {32.
const question = e.currentTarget;33.
const answer = question.nextElementSibling;34.
toggleDisplay(answer);35.
toggleBold(question);36.
const chevron = question.querySelector('.chevron');37.
chevron.classList.toggle('fa-chevron-down');38.
chevron.classList.toggle('fa-chevron-up');39.

}40.
-------Lines 41 through 125 Omitted-------

Conclusion

In this lesson, you have learned how to dynamically modify the content of an HTML page and to
dynamically modify CSS styles of HTML elements.

LESSON 8: CSS Object Model | 249

EVALUATION COPY: Not to be used in class.

250 | LESSON 8: CSS Object Model

EVALUATION COPY: Not to be used in class.

LESSON 9
Errors and Exceptions

EVALUATION COPY: Not to be used in class.

Topics Covered

 Using try/catch/finally to handle errors

Introduction

JavaScript provides several methods for catching and handing errors, the most useful of which is
try/catch/finally.

EVALUATION COPY: Not to be used in class.

❋

9.1. Runtime Errors

A runtime error is an error that occurs while a program is being executed. A runtime error can be the
result of invalid user input, a browser change, or bad data sent from the server.

It is the programmer’s job to anticipate, “catch,” and “handle” potential runtime errors.

 9.1.1. Completely Unhandled Errors

Look at this seemingly trivial code sample:

LESSON 9: Errors and Exceptions | 251

EVALUATION COPY: Not to be used in class.

Demo 9.1: ErrorsExceptions/Demos/simple-bug.html

-------Lines 1 through 8 Omitted-------
function getInput() {9.
const name = prompt('Type your name', '');10.
alert('Your name has ' + name.length + ' letters.');11.

}12.
getInput();13.
-------Lines 14 through 22 Omitted-------

It may not be obvious, but this code has a bug waiting to break free. If the user clicks Cancel or presses
Esc the prompt() function will return null, which will cause the next line to fail with a null reference
error.

If you as a programmer don’t take any step to deal with this error, the user won’t know what went
wrong. The error message will most likely be hidden in the console:

EVALUATION COPY: Not to be used in class.

❋

9.2. Globally Handled Errors

The window object has an event called error for which we can add an event handler, listening for
global errors. The next demo shows an example of this:

252 | LESSON 9: Errors and Exceptions

EVALUATION COPY: Not to be used in class.

Demo 9.2: ErrorsExceptions/Demos/simple-bug-onerror.html

-------Lines 1 through 8 Omitted-------
window.addEventListener("error", function (e) {9.
alert('Error: ' + e.error.message);10.
return true;11.

});12.
13.

function getInput() {14.
const name = prompt('Type your name', '');15.
alert('Your name has ' + name.length + ' letters.');16.

}17.
getInput();18.
-------Lines 19 through 27 Omitted-------

If the user presses Esc when the prompt asks for a name, our event handler fires.

Here’s the alert that we show to the user:

This makes sure the user knows there was an error, but it doesn’t help resolve the error. Also, it will
let the user know about all errors that occur, even innocuous ones.

EVALUATION COPY: Not to be used in class.

❋

9.3. Structured Error Handling

The best way to deal with errors is to detect them as close as possible to where they occur. This will
increase the chance that we know what to do with the error. To that effect, JavaScript implements
structured error handling, via the try…catch…finally block, also present in many other languages:

LESSON 9: Errors and Exceptions | 253

EVALUATION COPY: Not to be used in class.

try {
// statements;

} catch (error) {
// statements;

} finally {
// statements;

}

The idea is simple. If anything goes wrong in the statements that are inside the try block then the
statements in the catch block will be executed. The finally block is optional and, if present, is always
executed last, whether or not an error is caught.

The finally Block

In JavaScript, you’re unlikely to need the finally block except for advanced code involving
nested try / catch blocks.

Let’s fix our example to catch that error:

Demo 9.3: ErrorsExceptions/Demos/simple-bug-try-catch.html

-------Lines 1 through 8 Omitted-------
window.addEventListener("error", function (e) {9.

alert('Error: ' + e.error.message);10.
return true;11.

});12.
13.

function getInput() {14.
try {15.
const name = window.prompt('Type your name', '');16.
alert('Your name has ' + name.length + ' letters.');17.

} catch (error) {18.
alert('The error was: ' + error.name +19.
'\n The error message was: ' + error.message);20.

}21.
}22.
getInput();23.
-------Lines 24 through 32 Omitted-------

The error object in the catch block has two important properties: name and message.

254 | LESSON 9: Errors and Exceptions

EVALUATION COPY: Not to be used in class.

name - contains the type of error, which we could use to decide how we handle the error.

message - contains the error message.

With that in place, if we reload the page and cancel out of the prompt, we will get the following alert:

It’s a good programming practice to only handle the error on the spot if you are certain of what it is
and if you actually have a way to take care of it (other than just suppressing it altogether.) To better
target our error handling code, we will change it to only handle errors named “TypeError”, which is
the error name that we have identified for this bug.

Demo 9.4: ErrorsExceptions/Demos/simple-bug-try-catch-specific.html

-------Lines 1 through 8 Omitted-------
window.addEventListener("error", function (e) {9.

alert('Error: ' + e.error.message);10.
return true;11.

});12.
13.

function getInput() {14.
try {15.
const name = window.prompt('Type your name', '');16.
alert('Your name has ' + name.length + ' letters.');17.

} catch (error) {18.
if (error.name == 'TypeError') {19.
alert('Please try again.');20.
getInput();21.

} else {22.
throw error;23.

}24.
}25.

}26.
getInput();27.
-------Lines 28 through 36 Omitted-------

LESSON 9: Errors and Exceptions | 255

EVALUATION COPY: Not to be used in class.

Now if a different type of error happens, that error will not be handled. The throw statement will
forward the error as if we never had this try…catch…finally block. It is said that the error will bubble
up.

 9.3.1. Throwing Custom Errors

We can use the throw statement to throw our own errors. While there are several ways to do this, a
simple way is to throw a new Error object:

throw new Error('The given color is not a valid color value.');

256 | LESSON 9: Errors and Exceptions

EVALUATION COPY: Not to be used in class.

 Exercise 22: Try/Catch
 10 to 15 minutes

In this exercise, you will handle potentially-problematic user input in a simple calculator, designed to
return the quotient of two user-entered numbers.

1. Open ErrorsException/Exercises/try-catch.html for editing.

2. Within a try block:

A. Get the values of dividendField and divisorField and convert them to floats.

B. If the divisor is 0, throw a new Error with the message “Cannot divide by zero.”

C. If either the dividend or the divisor is not a number, throw a new Error with the
message “Please enter numbers.”

D. Divide the dividend by the divisor and assign the result to a variable. If that result
is not a number, throw a new Error with the message “Cannot solve this equation.”

E. Write the equation with the result out to the innerHTML of the msgField output.
Note that this should only happen if none of the above checks resulted in errors.

3. Within the catch block, write “There was a problem: ” followed by the error message out to
the innerHTML of the msgField output.

4. Test your solution in a browser.

LESSON 9: Errors and Exceptions | 257

EVALUATION COPY: Not to be used in class.

Solution: ErrorsExceptions/Solutions/try-catch.html

<!DOCTYPE html>1.
<html lang="en">2.
<head>3.
<meta charset="UTF-8">4.
<meta name="viewport" content="width=device-width,initial-scale=1">5.
<link rel="stylesheet" href="../normalize.css">6.
<link rel="stylesheet" href="../styles.css">7.
<script>8.
function displayAnswer() {9.
const dividendField = document.getElementById('dividend');10.
const divisorField = document.getElementById('divisor');11.
const msgField = document.getElementById('msg');12.

13.
try {14.
const dividend = parseFloat(dividendField.value);15.
const divisor = parseFloat(divisorField.value);16.
if (divisor === 0) {17.
throw new Error('Cannot divide by zero.');18.

}19.
if (isNaN(dividend) || isNaN(divisor)) {20.
throw new Error('Please enter numbers.');21.

}22.
const quotient = dividend / divisor;23.
if (isNaN(quotient)) {24.
throw new Error('Cannot solve this equation.');25.

}26.
27.

msgField.innerHTML = String(dividend) + " / " +28.
String(divisor) + " = " + String(quotient);29.

}30.
catch (e) {31.
msgField.innerHTML = 'There was a problem: ' + e.message;32.

}33.
}34.

35.
window.addEventListener('load', function() {36.
const equals = document.getElementById('equals');37.
equals.addEventListener('click', displayAnswer)38.

});39.
</script>40.
<title>Try/Catch</title>41.
</head>42.
<body id="exercise">43.
<main>44.

258 | LESSON 9: Errors and Exceptions

EVALUATION COPY: Not to be used in class.

<input type="text" id="dividend" class="operator"> /45.
<input type="text" id="divisor" class="operator">46.
<button id="equals">=</button>47.
<output id="msg"></output>48.

</main>49.
</body>50.
</html>51.

Conclusion

In this lesson, you have learned to use JavaScript’s try/catch/finally to catch and handle errors.

LESSON 9: Errors and Exceptions | 259

EVALUATION COPY: Not to be used in class.

	JavaScript Basics
	JavaScript vs. EcmaScript
	The HTML DOM
	JavaScript Syntax
	Accessing Elements
	Where Is JavaScript Code Written?
	JavaScript Objects, Methods and Properties
	Exercise 1: Alerts, Writing, and Changing Background Color

	Variables, Arrays, and Operators
	JavaScript Variables
	A Loosely Typed Language
	Google Chrome DevTools
	Storing User-Entered Data
	Exercise 2: Using Variables
	Constants
	Arrays
	Exercise 3: Working with Arrays
	Associative Arrays
	Playing with Array Methods
	JavaScript Operators
	The Modulus Operator
	Playing with Operators
	The Default Operator
	Exercise 4: Working with Operators

	JavaScript Functions
	Global Objects and Functions
	Exercise 5: Working with Global Functions
	User-defined Functions
	Exercise 6: Writing a JavaScript Function
	Returning Values from Functions

	Built-In JavaScript Objects
	String
	Math
	Date
	Helper Functions
	Exercise 7: Returning the Day of the Week as a String

	Conditionals and Loops
	Conditionals
	Short-circuiting
	Switch / Case
	Ternary Operator
	Truthy and Falsy
	Exercise 8: Conditional Processing
	Loops
	while and do…while Loops
	for Loops
	break and continue
	Exercise 9: Working with Loops
	Array: forEach()

	Event Handlers and Listeners
	On-event Handlers
	Exercise 10: Using On-event Handlers
	The addEventListener() Method
	Anonymous Functions
	Capturing Key Events
	Exercise 11: Adding Event Listeners
	Benefits of Event Listeners
	Timers
	Exercise 12: Typing Test

	The HTML Document Object Model
	CSS Selectors
	The innerHTML Property
	Nodes, NodeLists, and HTMLCollections
	Accessing Element Nodes
	Exercise 13: Accessing Elements
	Dot Notation and Square Bracket Notation
	Accessing Elements Hierarchically
	Exercise 14: Working with Hierarchical Elements
	Accessing Attributes
	Creating New Nodes
	Focusing on a Field
	Shopping List Application
	Exercise 15: Logging
	Exercise 16: Adding EventListeners
	Exercise 17: Adding Items to the List
	Exercise 18: Dynamically Adding Remove Buttons to the List Items
	Exercise 19: Removing List Items
	Exercise 20: Preventing Duplicates and Zero-length Product Names
	Manipulating Tables

	CSS Object Model
	Changing CSS with JavaScript
	Hiding and Showing Elements
	Checking and Changing Other Style Properties
	Increasing and Decreasing Measurements
	Custom data Attributes
	Gotcha with fontWeight
	Font Awesome
	classList Property
	Exercise 21: Showing and Hiding Elements

	Errors and Exceptions
	Runtime Errors
	Globally Handled Errors
	Structured Error Handling
	Exercise 22: Try/Catch

